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 The dawn of computational models in healthcare has revolutionised the drug 
development industry. The wet lab experiments entail enormously expensive and laborious 
procedures. As a result, the applications of computational designs have been a better replacement 
for manual experimentations. Identifying drug-target interaction (DTI) is a vital drug design 
process. In this review, we have explored the various computational methodologies actively 
used in the field of DTI prediction. We have hierarchically categorised the models into three 
broad domains: ligand-based, structure-based and chemogenic. We have further classified the 
domains into their subcategories. The functioning and latest developments achieved in each 
subcategory are further analysed in depth. This review offers a comprehensive overview of the 
tools and methodologies of each model. We have also compared the advantages and limitations 
of each model in every category. Finally, we look into the future scope of the machine learning 
models by addressing the possible difficulties faced in DTI. This article serves as an insight 
into the various models used in DTI prediction.
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 The increasing incidence of the disease 
burden necessitates the development of newer 
molecular entities. The average cost of developing 
a new drug range from 1 million to 5 billion 1,2. 
Many challenges, such as patient heterogeneity, 
lack of targets and biomarkers, lack of valid 
animal models, regulatory issues, cost, and 
prolonged drug development stages are several 
significant hindrances faced in the drug research 
and development (R&D) field 3. The various 
stages of preclinical drug development are target 
identification, validation, hit identification and 
lead prediction to optimisation. High throughput 

screening and in-vivo & and vitro screening 
methods have helped to discover the molecules 
in the initial stages accounting from target 
identification to lead prediction through various 
biological assays 4-6. However, the expensive 
and time-consuming initial processes entail 
newer models for lead identification. Computer-
aided drug design technologies (CADD) limit 
animal use and are cost-effective in identifying 
suitable drug candidates 7. Furthermore, In-silico 
methods collaborate with in-vitro methods in 
selecting the lead component for optimisation. 
These innovative technologies help in drug 
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designing/discovery processes by examining the 
drug-target interactions (DTI) and the binding 
affinities (DTBA). The technical advancement 
and development of computational methods 
with informative bioresources could reduce the 
significant burden of drug development.
 The drug-target interaction plays a vital 
role in drug discovery and drug repurposing. 
The polypharmacological properties of a drug 
and the ability to bind with multiple targets 
favour drug repurposing. Novel computational 
polypharmacology approaches have been 
developed for designing multi-target agents 8. 
Identifying and validating the drug target are the 
initial phases of drug discovery. The interaction 
of an ion channel, enzymes, G protein-coupled 
receptor, and nuclear receptor modulates target 
protein effects. Drug-target prediction helps to 
understand the mechanism, therapeutic effect, 
and side effects of drugs. Several factors affect 
the association of the drug target interaction and 
experimental validation, making it a cumbersome 
process. Nowadays, multi-target drug development 
is imperative to increase drug efficacy and 
overcome resistance 9,10,11. Considering these facts, 
we need appropriate computational models to 
detect the novel potential drug target association. 
Cheminformatics, data-mining techniques, and 
structural databases are used to identify the target 
site prediction. The possible target identification 
can be done by comparing these HCS hit structures 
with 3D shapes of annotated compounds. Once 
lead identification is done, lead optimisation can 
proceed with computer designing.
 Computational methods are applied to 
various phases of the drug development procedure 
and produce fruitful outcomes. Drug target 
interaction is one of the crucial steps in drug 
development. Ligand-based drug design, structure-
based drug design and chemogenic approach are the 
three main classes that constitute in silico methods. 
The former two classes are a part of CADD tools. 
CADD is a well-renowned computer tool that 
generates graphical simulations of a compound. 
CADD involves the following principles: (i) 
Utilisation of potential to rationalise drug discovery 
and design. (ii) Requires information about ligands 
and targets for identifying and repurposing the 
drugs. (iii) Designing filters that remove unwanted 
molecules and perform eligible candidate selection. 

Ligand-based CADD adheres to the idea that 
similar molecules and proteins bind together. On 
the other hand, structure-based CADD procures 
information from the three-dimensional structures 
of targets to streamline their binding with drugs. 
This CADD includes three different groups: 
molecular docking, virtual molecular screening, 
and molecular dynamics. Among these, molecular 
docking is widely used for simulation purposes. 
Some popular molecular docking tools are GOLD, 
AutoDock v4, AutoDock Vina, FlexX, and Dock.
 Chemogenic approaches overcome 
the limitations of the above-stated methods. 
These approaches include machine learning 
and deep learning methods that forecast the 
interactions. They consider chemogenic and 
biological information as target sources for an 
interaction. They combine all the predictions made 
for interaction from all the different sources to 
provide the outcome. Feature-based and similarity-
based are two types of categories in chemogenic 
approaches. Feature-based approaches obtain the 
features from known interaction sources, whereas 
similarity-based techniques obtain input from the 
neighbour nodes’ features.
 Virtual screening and de novo drug 
designing methods synthesise suitable drug 
candidates based on the binding site of the target 
protein with greater affinity 12. Artificial intelligence 
(Machine learning and deep learning) integrates 
different computational pharmacology methods to 
improvise drug screening and designing processes 

13, 14. Furthermore, these effective algorithms 
could be an ideal practical tool in various drug 
development stages. The multiscale de novo drug 
design, which combines the QSAR models, can 
effectively improve the properties of the drug and 
favours personalised medicine 15.
 In this review, we have discussed 
the various strategies that forecast drug 
target complexes. We have also discussed the 
subcategories involved in each strategy and 
analysed their merits and demerits.
Rise Of Artificial Intelligence In DTI
 The advent of computational biology has 
marked a significant breakthrough in computation 
strategies like relative binding energies, active 
core matter and lead optimization 16-18. Further, 
the insurgence of computer-based models, ranging 
from simple software tools to complex DL models, 
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is gaining popularity in the field of drug design. 
The computational methodologies are again widely 
classified into three main broad categories: Ligand-
based, structure-based and chemogenic approaches. 
One such method that has gained popularity in drug 
design research is Computer-aided drug design. 
CADD are computational tools used to quantify 
and modify characteristics of possible ligands to 
expedite the drug design process. Ligand-based and 
Structure-based are two different CADD methods 
that are classified based on the availability and 
structural features of the compounds.
Ligand – Drug Molecular Binding
 Ligand-based approach predic ts 
binding possibilities based on similarities in the 
physiological properties between a drug-protein 
and target. This method is also referred to as the 
indirect protocol in pharmaceutical research, as it 
relies on the structural data of the known ligand 
molecules to understand the structural properties 
of ligands that share the same pharmacological 
behaviour 19-21. Ligand-based models comprise 
three models: Pharmacophore Modelling and 
Quantitative Structure-Activity Relationship 
(QSAR). The former two are widely used and are 
discussed in this section. 
 The first approach, the pharmacophore 
model, gives a description of the minimum 
physiological characteristics a molecule must 
possess to bind to the target. The pharmacophore 
query encodes the interaction pattern in a three-
dimensional way. Different pharmacophore queries 
are structured for identification purposes based 
on the following cases. (i) If the structure of the 
target is present, then the model is constructed 
by analysing the action mode of the receptor and 
a drug molecule involved. (ii) If the structure 
of the protein is not known and only the active 
molecule, then pharmacophore fingerprints can be 
applied to get similar molecules. A pharmacophore 
fingerprint is a string which describes the frequency 
of every possible combination of molecular 
interaction features in the string 22. One of the 
popular pharmacophore modelling software is 
LigandScout. It can construct queries automatically 
from a protein database which contains interaction 
files. Some of the other programs are DISCO, 
GASP, RAPID and HypoGen. Pharmacophore 
modelling has several demerits: (i) Difficult 
to construct as the number of ligands and their 

flexibilities increase. (ii) lacks good scoring 
function (iii) Highly dependent on priorly available 
conformation database. These reasons make 
pharmacophore a non-ideal prediction method.
 The second one, QSAR, is a mathematical 
model that finds and recapitulates the relationships 
between trends in structural changes and biological 
endpoints to discover which chemical properties 
determine their biological activities. In drug 
discovery, QSAR identifies structures that could 
inhibit eûects on speciûc targets and are less 
toxic (non-speciûc activity) 23. Three-dimensional 
structural knowledge was introduced in QSAR, 
resulting in the formation of 3D-QSAR. This 
QSAR captures the interaction between drug and 
target molecules in 3D format and reflects the 
changes in their energy and pattern. Thus, studying 
the structure-activity relationship 24. 
 One of the major bottlenecks in this drug 
design model is that they cannot work when both 
the target and interacting protein structures are 
unknown. Another drawback is that ligand-based 
methods perform poorly when the number of known 
ligands is insufficient 25. The high computational 
cost involved in these methods surpasses their 
usage. QSAR has an essential role in the drug 
design process as they are cheap compared to the 
medium throughput in vitro and low throughput. 
These models evolved to support 3D structural 
data. However, the advent of SB-CADD resulted 
in the replacement of this drug design. The more 
computational power and accuracy given by SBDD 
makes it a preferred CADD. The famous ligand-
based tools are given in Table 1.
Structure Based Computer Aided Drug Design
 Structure-based computer-aided drug 
design (SBDD) is based on the knowledge of 
target structure to compute minimal binding free 
energy to get ligand-receptor complex. This type 
helps design entities that require minimal energy 
and hold onto the target 26. They are used to screen 
a macromolecule binding to the ligand location 
virtually. However, this model requires a huge 
collection of experimentally solved to achieve 
precision. Molecular Docking and Molecular 
dynamics simulation are the most prevalent SBDD 
models.
Molecular Docking simulations
 One of the popular methods in this CADD 
is molecular docking. This methodology involves 
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graphically simulating the bonding between two 
molecules by computing the binding affinity and 
thus identifying a possible drug target. Docking 
methods are used to get the potential ligands 
and can estimate the binding parameters of the 
complex in prior. Most docking tools deploy known 
stochastic search algorithms, namely, Evolutionary 
algorithms, Monte Carlo algorithms and fragment-
based algorithms. These search algorithms can 
follow two kinds of docking simulations. When the 
mobility of both receptor and ligand are static, it is 
rigid docking. The other type is flexible docking, in 
which both compounds are mobile and flexible. The 
binding energy and size are computed, and the pose 
is finalized 26. Tools like DOCK, FLOG, GOLD, 
FlexX and ICM that utilise these algorithms offer 
high throughput. 
Semi-flexible docking using Monte Carlo 
algorithms 
 The Monte Carlo algorithm is a semi-
flexible docking method applied to the probe’s 
degrees of freedom. The algorithm utilises a 
conformational search strategy to generate different 
ligand positions by considering properties like 
affinity, bond rotation, compound translation or 
rotation. Energy-based selection criteria are used 
to evaluate the generated complex. If it passes the 
criterion, the entity is used to generate the next 
conformation. Most of them use the Metropolis 
criterion for this. Metropolis criterion generally 
accepts steps that lower the total energy and rarely 
takes steps that increase energy to avoid being stuck 
in the local energy minimum. The tools which use 
this algorithm are MCDock, AutoDock, ICM, QXP 
and Affinity 27.   
Predicting docking positions with full ligand 
flexibility
 One of the renowned MC methods, 
MCDock tool,  a computer program that 
automatically predicts a ligand’s binding mode 
by allowing full flexibility of ligands. The scoring 
function used in this algorithm is a combination 
of interaction and conformational energies 28. 
Primarily, a ligand is placed randomly into the 
target, considering both are in a rigid state. The 
non-clashing poses are identified by the scoring 
function to evaluate them based on the minimal 
contacts made. Later, Metropolis sampling is done 
to sample the binding spots. 

Blind Docking mechanism using protein 
structures
 The latest development of this simulation 
is EDock. EDock focuses on predicting precise 
blind docking by feeding on low-resolution 
predicted protein structures. This model comprises 
five sequential steps: ligand-binding site prediction, 
binding pocket construction, initial docking pose 
generation, REMC docking simulation, and final 
model selection. In the first step, the final prediction 
is chosen by combining results from algorithms 
like S-SITE through a linear SVM consensus 
model. The binding pocket is then obtained through 
negative imaging which is used by a modified 
graph-matching algorithm to generate the initial 
ligand docking conformations 29 where every node 
represents a pair of ligand atoms and the binding 
pocket. The penultimate step, REMC (Replica 
Monte Carlo simulation) is used to improve the 
efficiency of sampling of the docking system 
and involves rigid-body ligand translations and 
rotations. Scoring techniques like XSCORE 
and SPICKER methods are used to get the best 
performance with both predicted and experimental 
receptor structures 30.
 Many of the docking algorithms require 
the user to specify the binding site prior. Sometimes, 
the native binding pocket may be oblivious to the 
end users. The Monte Carlo method, EDock, 
overcomes this limitation by supporting blind 
docking. Despite MC models’ success in accurate 
prediction, they bear high computational costs to 
long model timescales on protein-ligand binding 
and unbinding. Since these methods produce 
different orientations of a drug molecule, these 
models can be used only when the 3D structure 
of compounds is available. Moreover, they are 
difficult to apply to member proteins as their 
structures are very complex.
Evolutionary Semi Flexible Stochastic Algorithm 
 Another example of semi-flexible 
stochastic algorithms is evolutionary algorithms. 
These algorithms are generally iterative stochastic 
optimisation procedures similar to the evolution 
process. A genetic algorithm identifies possible 
solutions to combinatorial optimisation problems 
for search problems where the ligands and proteins 
are arranged like that of the DNA sequence. This 
representation is called a state variable. The fitness 
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Fig. 1. Flowchart Diagram for Classification of Computational models

Table 1. Ligand based drug design - Pharmacophore modelling Software Techniques

Algorithm used Software/ Description
 Programs

Pharmacophore Modelling PharmaGist A web server for pharmacophore detection which requires 
  a set of structures of drugs as input that are known to bind 
  to the target. The pharmacophores are constructed by 
  multiple flexible alignments of the input.
Pharmacophore Modelling LigandScout A fully integrated platform which is used for accurate 
  virtual screening. They develop 3D chemical feature 
  pharmacophore models
Pharmacophore Modelling MOE Pharmacophore discovery application used for fragment-based, 
  ligand and structure-based design projects. Searches for novel 
  active compounds when no receptor is available
Pharmacophore Modelling Catalyst Does 3D database building and searching; ligand conformer 
  generation and analysis tools. Part of Discovery Studio
QSAR Cloud 3D  A web tool that integrates the functions of molecular structure 
 QSAR generation, alignment, and molecular interaction field (MIF) 
  computing. Final analysis to provide one solution.

of a newly formed complex is the total interaction 
energy between the molecules in the complex. 
A complex scoring function, incorporating 
factors like mutation, crossover rates and several 
evolutionary rounds, is used to calculate this fitness 
31-33. The methodology of the genetic algorithm 
involves three stages. Initially, in the crossover 
stage, two unrelated individuals are mated in which 

their offspring inherit parental features. After this, 
some offspring get mutated, and the genes may 
change randomly. Finally, the selection of the 
offspring of the present generation occurs based 
on the individual’s fitness: thus, solutions better 
suited to their environment reproduce, whereas 
poorer-suited ones die.
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Table 2. Structure based drug design - Molecular Docking Software Techniques

Algorithm used Tools/  Description
 Programs

Monte Carlo Docking Algorithm MCDOCK Program for predicting the binding mode of a 
  ligand automatically by allowing full flexibility 
  of ligands
Monte Carlo Docking Algorithm AutoDock Molecular docking simulation software which 
  is effective for protein-ligand docking. AutoDock 
  Vina is a successor of this software.
Monte Carlo Docking Algorithm RiboDock Software that is used for docking small molecules 
  against proteins and nucleic acids. Designed for 
  high-throughput virtual screening.
Evolutionary/Genetic Docking Algorithm Catalyst Automated Docking tool that shows how ligands 
  bind to proteins by allowing various kinds 
  of flexibilities
Evolutionary/ Genetic Docking Algorithm GLIDE Docking program that predicts protein-ligand 
  binding modes and ranks ligands by 
  high-throughput virtual screening 42

IncrementalconstructionIncremental  FlexX Automatic docking tool for flexible ligand
Construction(Docking) 
Evolutionary Programming(Docking) EADock Uses a hybrid evolutionary algorithm with 
  two fitness functions 43.
Molecular Dynamic Simulation GROMACS Uses a hybrid evolutionary algorithm with two 
  fitness functions 43.
Molecular Dynamic Simulation PLUMED Simulates proteins, lipids, and nucleic acids. 
  Compatible with both CPUs and GPUs.

 One of the implementations of GA is 
DOCK, whose purpose is to dock the active site of 
the entire ligand or only a rigid fragment. Genetic 
Optimisation for Ligand Docking (GOLD) is an 
automated docking based on how ligands bind 
to proteins by allowing complete acyclic ligand 
flexibility, partial cyclic ligand flexibility and 
partial protein flexibility. The possibility of a 
generated complex is evaluated by maximising the 
ligand-target hydrogen bonds 34. GOLD has mostly 
shown better accuracy than other methods.
 Another genetic algorithm-based flexible 
docking program is the AutoDock program, which 
allows favourable phenotypic features to become 
inheritable. The AutoDock routine firstly plots an 
interaction energy map by using several probe 
atoms, and a subsequent search evaluates the 
binding energies using the maps. The latest version 
of AutoDock is AutoDock4.2 which is a two-
point attractor approach. The approach penalises 
newly formed structures in which the sources are 
mispositioned. These tools support small binding 

sites and opened cavities and predict well even 
when the ligand is hydrophobic. This program 
only explores the torsional degrees of freedom, 
holding bond angles and constant bond lengths 35. 
The uncertainty of convergence in the outcomes is 
the main limitation of this algorithm. It also fails 
to operate accurately when the ligand is highly 
flexible and polar.
 GOLD and AutoDock tools almost share 
the same advantages and disadvantages. Unlike 
the former, the latter does not appropriately rank 
ligands in large cavities.
Fragment bond simulations between ligand-
protein pairs
 The fragment-based approach is used 
to detect the interaction spots in a ligand-protein 
pair by simulating the bonding between their 
fragments. It avoids the degree of freedom entirely. 
The process for this approach involves five main 
steps. First, a diverse and good degree of suitable 
fragment library must be organised. The second 
stage is the virtual screening of the established 
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library. Due to the small size of the fragments, it 
is not possible to make accurate energy estimates. 
However, analysis of potential atomic interactions 
can aid in finding appropriate segments. Then, the 
selected segments are combined to form novel 
compounds. Strategies like fragment growing, 
fragment linking, and lead fragments help in this 
design phase. Next, the generated complexes are 
evaluated with their biological assays. The false 
results are computationally eliminated before 
this step. The last step confirms the binding and 
understands the mechanism 36.
Time dependent docking computer simulations 
 Molecular Dynamics Simulation is a 
time-dependent docking mechanism that predicts 
the conformational positions of a protein at a 
particular time. It uses Newton’s laws of motion 
and thermodynamics to understand the atomic 
changes that occur in a protein’s structure over 
time and evaluate parameters such as energy 
37. This method allows structural flexibility and 
entropic effects. The forces between bonded and 
non-bonded atoms contribute. Non-bonded forces 
between compounds arise due to van der Waals 
interactions 38-40. Software tools like AMBER, 
Abolane, GROMACS, MOE and YASARA
 The recognition from bound to unbound 
state is difficult at the molecular level in molecular 
dynamics. To overcome this limitation, a modified 
version of Molecular Dynamics, Supervised 
Molecular dynamics, is proposed. This methodology 
investigates ligand-receptor binding events 
irrespective of its starting position, the ligand’s 
chemical structure, and its receptor binding affinity. 
This process is done by considering unbiased MD 
simulations and exploring the different pathways 
of protein-peptide binding 41.
 This time-dependent model of Molecular 
Docking, Molecular dynamics, proves advantageous 
as it forms a more stable docked complex. Despite 
providing more accurate conformation, they prove 
difficult over high-barrier energy conformation. 
Moreover, the computational cost and time 
involved are huge.
 The structure-based tools are described 
in Table 2. Despite proving advantageous by 
simulating 3D complexes formed through drug-
target interaction, the interactions are not possible 
without the 3D structure of the target proteins. The 

docking mechanism is also redundant when the 
target information is not available.
Advent Of Chemogenic Approaches
 The evolution of artificial intelligence 
over the years has resulted in its wide application 
in the healthcare field. These approaches use the 
information on both protein and drug molecules 
and combine their spaces for accurate predictions 
25. They can be further classified into 2 types: 
feature-based and similarity-based 44-48.
Classification models of feature-based approach
 The first approach is feature-based 
classification models. The models are trained 
with drug target pairs encoded as feature vectors 
49,50. The distinct features are obtained from the 
pool of molecular drug characteristics using 
methods such as Principal Component Analysis 
or correlation matrix, then passed to the machine 
learning models. The feature models are then used 
to predict chemical bonding in a new pair of drugs 
and targets 25. 
 These models have high computational 
costs due to the complex process involved. 
However, the prediction models require target 
information to be known 51. This approach can 
be classified into three main divisions: CNN or 
SVM Based methods, Ensemble methods and 
Miscellaneous techniques.
Forecasting complex formation using 
Convoluted Deep Neural networks 
 A convolutional neural network is a 
supervised model that consists of convolution, max 
pooling, fully connected and output layer. Feature 
extraction is a convolution layer with a rectified 
linear unit (ReLU) activation function. A max-
pooling layer is added to reduce the dimension of 
features. Finally, the fully-connection and output 
sigmoid layers are used to classify the tasks. 
 One of the latest adaptations of CNN, 
DTI-CNN, is a heterogenous model that has a 
feature extractor, DAE-based feature selector 
and interaction predictor. Initially, the features of 
the drugs-protein complexes are extracted using 
Jaccard similarity coefficient and Random walk 
parameters with a restart algorithm. Secondly, 
the selective low-dimensional representation of 
drug and protein features using the denoising 
autoencoder (DAE) model. Finally, a CNN model 
predicts the interaction between a given pair of 
drugs and proteins 52,53.
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 Another latest CNN model, FRnet-DTI, is 
a deep learning tool that includes an auto-encoder 
used in feature manipulation and a CNN used as a 
classifier for drug target interaction prediction. The 
autoencoder model, which also uses convolution, 
extracts about 4096 features from the given set of 
features and feeds its output to the FRnet Predict 
model 54-57. SDnDTI is another modified CNN 
method that denoises DTI data and does not require 
additional high-SNR data for training. The multi-
dimensional input data is divided into many subsets 
of six DWI volumes and transformed the subset 
to match the same diffusion encoding directions. 
Each DWI is denoised using a deep 3-dimensional 
CNN model. This denoising ability aids this model 
in preserving image sharpness and textural details 
in the results.
 Despite providing correct predictions, 
the Convolutional neural network models must 
often be combined with other models or require 
an increase in layer depth for better precision. This 
behaviour increases their overall computational 
cost. When the raw features are trained by passing 
through layers in CNN, each layer retains only a per 
cent of the feature values. Since the raw features 
are coupled with unnecessary noises, the filtering 
at each layer may drop essential values.
Role of Support Vector Machines in DTI
 Support Vector Machines (SVM) is 
a machine learning method where a linear 
separator segregates two different sets of points 
in multi-dimensional space to predict contrasting 
classes. One advantage of the model is that it can 
process multi-dimensional patterns and define 
the relationships among them 58. This method 
offers great precision in all computations and 
works efficiently. The model can be used for 
both classification and regression purposes. At 
the beginning of SVM models, the classification 
models formulated several drug-related features 
like molecular similarity and chemical structure 
into a matrix. This matrix was inputted as a kernel 
to predict the classes 59. SVM is mainly used in 
nonlinear QSAR and virtual screening. Along with 
predicting target-specific activity, this method can 
also predict multi-target mechanisms. Classifier 
SVM is a type of multi-target SVM which generates 
a sequence of final classifiers by storing the distinct 
features from previous predictions. SVM also 
predicts activity cliffs and MMP cliffs by a graph 

of reaction representations in drug interactions. 
This method identifies proteins active against such 
“orphan” targets using reference molecules from 
similar targets. It employs a similarity searching 
mechanism where ligands that are similar show 
similar behaviour 60. One of the major drawbacks of 
SVM is that the number of false positives returned 
is higher than in other methods.
Procuring unique drug features and predicting 
using Ensemble based methods
 Ensemble-based methods obtain the 
features of drugs and targets and train an ensemble 
of unrelated decision trees. While predicting the 
possibility of interaction between a drug target 
pair, they receive the resulting outputs of all the 
ensembles and statistically combine them to get the 
final decision 61. Each decision tree adopts a top-
down approach where the head node is a root node. 
Random forest is an ensemble-based algorithm 
suitable for large datasets with multiple dimensions 
62. It procures relative features and processes 
them for classification. This model mitigates the 
condition of overfitting. Overfitting happens when 
a model also learns the noise from the training data, 
which affects the model’s overall performance. 
This can result in the negative evaluation of newly 
encountered data 63-66.
 However, ensemble-based techniques 
like Random Forest show better predictions than 
CNN. The feature ranking embedded in each 
ensemble helps in better classification and, thus, 
precise prediction. Nevertheless, these models 
fail to handle negative sampling, a condition that 
arises when there is no information on drug-ligand 
interaction. Further, models, such as decision trees 
and SVMs, have a significant bias for finding the 
dominant class and thus result in poor performance 
67.
Similarity based methods
 Current databases with drug-target 
details contain a small number of experimentally 
validated sets of the pairs. Thus, many drug target 
pairs for which the interactions are not present. 
Since feature-based methods can’t predict when 
there is no complete knowledge about receptors, 
similarity-based models were introduced. This 
prediction assumes that if two molecules have 
similar properties, they are likely to be linked. 
The models can be used especially when uncertain 
information on any molecules 68,69,70. Furthermore, 
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these models give high prediction accuracies as 
they have developed kernels 25. Here, the similitude 
between two drugs is generally represented in 
matrices. Similarly, the relation between two 
targets can also be shown in matrix format.
Predicting molecule formation using neighbour 
interaction profiles
 Neighbourhood methods specialise 
in predicting the interaction profiles of drugs 
and targets based on their nearest neighbours’ 
interaction information.  Neighbourhood 
methods such as k nearest neighbour, k means 
clustering and k medoids clustering are algorithms 
that cluster together drug target pairs that show 
similar characteristics. Thus, these methods can 
extrapolate interactions for an unknown pair from 
the attributes of a known pair.
 The weighted nearest neighbour algorithm, 
called WNN, is the nearest neighbourhood model 
that constructs an interaction score profile for a 
new drug compound using the information about 
known compounds in the dataset. To compute 
the possibility of new interaction, the chemical 
similarity of the new drug is compared with other 
known drug compounds and their corresponding 
profiles are considered to generate a score 
interaction profile for that drug compound. These 
methods are often used in combination with 
other classification/ prediction models for better 
performance.
Matrix Factorization mechanism
 The matrix factorisation method captures 
the latent feature metrics for drugs and targets 
from the Drug Target Interaction matrix. It then 
combines the metrics to reconstruct the interaction 
matrix for prediction.
 The initial approach towards matrix 
factorisation in drug interaction mechanisms was 
with the development of the Bayesian-based matrix 
formulation method. Kernelized Bayesian Matrix 
Formulation combines dimensionality reduction, 
matrix factorisation and binary classification 
methods. They factor in precompiled similarity in 
chemical structure and protein patterns to predict 
drug-target interaction networks where similar 
compounds interact with similar proteins 71-74. The 
projection of drugs and target proteins into a multi-
dimensional space helps estimating the similarities 
and formulating the joint Bayesian probabilities 
to solve this binary class prediction problem 75. 

The MF method is integrated with the Nearest 
neighbourhood method to improve the prediction 
results further. 
 A heterogeneous matrix factorisation 
method, which combines weighted K nearest 
known neighbours (WKNKN) with graph 
regularised matrix factorisation (GRMF), is 
developed. To mitigate the issue of unknown 
interactions, a KNKN model is designed to add 
edges with intermediate interaction likelihood 
scores. The model gets the close neighbours of the 
target ligands to predict the interaction. The latter 
is a matrix factorisation technique with a graph 
form of regularisation which predicts and avoids 
overfitting simultaneously 76.
Drug - target side integrated prediction using 
local network models
 Bipartite local models (BLMs) comprise 
of two kinds of prediction: drug side and target side 
prediction, and then join these predictions to get 
the final prediction scores for the drug target pair. 
 Despite having good performance, the 
classic BLM, can’t learn without training data 
and thus predict new compounds. Therefore, a 
procedure called neighbour-based interaction-
profile inferring (NII) is integrated with this 
model to classify new interactions. The interaction 
information procured from this procedure is 
treated as label information and utilised for new 
candidates’ behaviour prediction 77-79.
 The traditional BLM-based methods 
cannot correctly predict new drugs or targets 
without any known interactions available. This 
resulted in extending the existing model by adding 
preprocessing to prove effective in new candidate 
problems.
 The Bipartite Local Model is combined 
with the self-training Support Vector Machine to 
achieve better prediction accuracy to discover 
interactions. Before the classification, to categorise 
interactions as negative or positive, a k-medoids 
clustering method is used. K-medoids is an 
unsupervised partitioning technique of clustering 
where the data set of n objects is split into k clusters. 
The number k of clusters equals the number of 
positive interactions. First, BLM for a drug is 
trained with the help of an interaction profile of 
the drug and a similarity matrix of target proteins. 
Next, the self-training SVM is used as a classifier 
that differentiates known interactions (positive) 
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from unknown interactions (negative) where the 
target similarity acts as a kernel. Finally, the model 
predicts the probability that interaction can exist 
between a drug-target pair by considering the 
similarities between a target and a trained target 
80. The major limitation is that BLM also suffers 
from bias.
Mapping protein and drug molecule connections 
through Network systems 
 Network-based models represent the 
topological structure of the chemicals and proteins 
where the connection between them is represented 
as edges. Depending on their position, their features 
can be further derived locally or globally. 
 A graph-based method, DTINet, predicts 
novel drug–target interactions by constructing a 
heterogeneous network which combines diverse 
drug-related information. This model aims to 
learn a low dimensional informative feature vector 
representation and project them from drug to target 
vector space scheme for them to make accurate 
predictions. The feature vectors visualise the 
topological properties of individual nodes in the 
heterogeneous network. This model is robust to 
noisy and high dimensional data as it is designed 
to learn low dimensional features. The geometric 
proximity of the feature vectors 81-85.
 To consider multiple data sources, a 
network framework, EFMSDTI is proposed to 
predict the interactions. First, multi-source data 
of drugs and targets are combined or split by 
classifying multi-source data. When there are 
multiple kinds of networks in a category, whether 
to join them into one network is determined 
according to their contribution to DTI prediction. It 
includes topological graphs containing Drug-drug, 
Drug-disease, Drug-side Effect, Target-target, and 
Target-disease interactions and a semantic graph 
with Drug similarities and Target similarities. 
Then, the networks are combined to get the 
low-dimensional representations of compounds 
based on the Graphical neural network models. 
Finally, LightGBM, a tree-based algorithm that 
grows vertically, is used. It is a gradient-boosting 
framework. Its ability to handle multiple data 
and reduced computational cost make it a good 
preference for prediction 86.
 These models are primarily precise as they 
hold the merit of encoding the internal chemistry 
of the biomolecule. These properties determine the 

structural aspects, such as dynamics and structural 
altercations. The graph-based models integrated 
with multi-task learning can also be applied for 
highly imbalanced sub-datasets and perform 
better than descriptor-based models. Building 
generalisable and robust graph models require 
large-scale, high-quality datasets. However, the 
datasets in the practical drug databases suffer from 
narrow chemical diversity and insignificant sample 
sizes. Moreover, the prediction performances for 
such models are not so convincing.
Network based deep learning methods to 
integrate proteins and drugs interactions  
 Network diffusion methods investigate 
graph-based techniques to influence propagation 
in drug–target networks and predict novel DTIs. 
These methods are efficient in finding and 
establishing unknown drugs to target interactions. 
As a result, they are often combined with other 
prediction models to achieve better accuracy 87-90. 
The integration of protein-to-protein interaction 
and drug-to-drug interaction has helped further 
improve the network models’ overall performance.
 By giving the topological information of 
protein interaction interactome (PPI) and drug-to-
drug interaction (DDI), a classic random forest 
algorithm predicts the DTI. With the help of these 
two interactions, the features of the drugs and 
targets are measured through weight function. 
However, this method has a drawback. It takes 
only the immediate neighbours into account. 
To mitigate this shortcoming, the Random walk 
restart algorithm is applied to both PPI and DDI 
networks separately. Then, with the final affinity 
scores from the RWR algorithm, the feature vectors 
are reweighted to generate negative drug-target 
interactions.

CONCLuSION

 T h e  d e v e l o p m e n t  o f  e f f e c t i v e 
computational models and accurate drug-target 
interaction prediction make a significant revolution 
in drug discovery research. The application of 
these innovative drug-target strategies overcomes 
the challenges in developing the lead therapeutic 
candidates. In this review, we have adopted a 
hierarchical classification scheme comprising three 
main categories: Ligand-based models, structure-
based models, and machine learning models. 
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Ligand-based methodologies focus on forecasting 
drug-target binding by analysing structural 
similarities between them. CADD models, like 
virtual simulations, can help identify the interaction 
in drug-target pairs when the conformational 
properties are present. Lastly, the machine learning-
based method also enhances the prediction and 
favours accurate results. Different algorithms need 
to be employed and integrated to achieve greater 
precision and effective forecasts based on the 
specificity of the algorithms. Moreover, the multi-
target multi-drug models could be a promising tool 
for drug repurposing against most life-threatening 
diseases. So, the invention and application of these 
technically advanced drug-target predictions help a 
successful procession of drug development stages 
and serve mankind.
 Machine learning has undoubtedly 
improved prediction outcomes in DTI prediction, 
but there remains scope for further development. 
The richness of data available in drug databases 
presents both opportunities and challenges. Data 
cleaning and sampling are labour-intensive tasks 
that necessitate much more advanced tools. The 
limited availability of some drug target pairs in 
databases can result in the underperformance 
of supervised machine-learning models. Thus,  
more semi-supervised models must be equipped 
to provide more comprehensive insights into the 
interaction despite the scarcity of labelled data. 
Thus, the further advancement of machine learning 
technology holds promise in advancing our 
understanding of complex biological systems and 
facilitating drug discovery processes efficiently.
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