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	 Bio computing is an emerging interdisciplinary field that harnesses the information 
processing capabilities of biological substrates like DNA, proteins and cells to perform 
computational tasks. Rather than relying solely on conventional silicon-based computers, bio 
computing leverages the innate computational properties of biomolecules to encode, store, 
process and transmit information in unconventional ways. Core approaches include DNA 
computing, which uses DNA biochemistry to solve problems in a massively parallel fashion. 
Protein computing utilizes protein conformational dynamics to implement logic gates and 
communication modules for molecular information processing. Cellular computing focuses on 
engineering gene circuits and synthetic biology tools to program computational behaviours in 
living cells. Neural computing builds artificial neural networks inspired by biological brains. 
Key application areas include biomedicine, smart drug delivery systems, biosensing, hybrid 
organic-inorganic electronics, and biomolecular manufacturing. While still facing challenges 
around biocompatibility, programming complexity and ethical concerns, bio computing has 
achieved major technical milestones demonstrating its promise. Continued progress at the 
interface of biology and computing could enable future technologies like bio processors, in-vivo 
biocomputers, living materials and bio-intelligent systems. With responsible development, bio-
inspired computation may catalyse the next revolution in human technological capabilities. 
This emerging field thus warrants enthusiastic attention as computation further converges with 
the living world.
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	 B i o  c o m p u t i n g  i s  a n  e x c i t i n g 
interdisciplinary field that utilizes biological 
materials to perform computations and information 
processing tasks.1 Instead of using traditional 
silicon-based computers, bio computing leverages 
the information storage and processing capabilities 
of biomolecules like DNA, proteins and cells. 
The key idea is that many biological molecules 
and systems already perform logic operations, 
data storage and communications as part of their 

normal functioning.2 Bio computing aims to 
understand these natural capabilities and engineer 
new synthetic biological systems to carry out useful 
computational tasks.3,4

	 Some examples of bio computing include:
• DNA computing - Using DNA and molecular 
biology tools to solve mathematical problems. 
DNA molecules can encode information and 
molecular operations on DNA like annealing can 
perform parallel computations.5,6
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• Protein computing - Using protein interactions 
and conformational changes to perform logic 
operations and calculations. Proteins can switch 
between different confirmations in response to 
inputs like other molecules binding, allowing them 
to mimic logic gates and circuits.7–10

• Cellular computing - Programming gene circuits 
and networks within living cells to carry out 
sensing, information processing and actuation 
tasks. Synthetic biology allows engineering cells 
with toggle switches, oscillators, logic gates etc.11,12

• Neural computing - Building artificial neural 
networks that are inspired by information 
processing in biological brains. The connections 
between neural network nodes mimic the synaptic 
signaling between neurons in the brain.13–16

• Molecular computing - Designing and synthesizing 
molecules with specific structures so they can 
implement algorithmic functions and calculations 
when reacting with each other. The molecules 
effectively act as tiny programmable computers.17,18

	 Overall, bio computing provides an 
alternative paradigm to silicon computing by 
storing and processing information in biological 
substrates. It holds exciting promise for developing 
future biocompatible computing devices and 
interfacing them with biological systems.
History and origins of bio computing
	 The foundations of bio computing 
were laid in the 1990s through pioneering work 
by computer scientists and biologists exploring 
the information processing capabilities of DNA 
and proteins.19,20 In 1994, Leonard Adleman 
demonstrated the first example of DNA computing 
by solving a small instance of the directed Hamilton 
Path problem using DNA molecules6,21. This 
seminal work established the possibility of using 
DNA biochemistry to perform computational 
operations.21

	 The field advanced significantly in 
subsequent years. In 1996, actual wet lab DNA 
computing systems were developed to solve chess 
problems and other computational challenges.22,23 
Early proponents like Erik Winfree demonstrated 
simple DNA-based “robots” and computational 
circuits24,25. By 2002, gene regulatory networks 
were engineered to mimic neural network 
computations for pattern recognition tasks. 26–28

	 Protein computing also emerged in the 
1990s, spearheaded by groups like Ehud Shapiro 

who designed in vitro enzymatic logic gates 
performing Boolean operations29–31. Other advances 
included designing molecular Turing machines 
based on proteins and using protein molecular 
recognition for biomolecular interfacing. The 
interdisciplinary field of synthetic biology greatly 
expanded the toolkit for engineering gene circuits 
and cellular computing systems.29,31,32

	 On the neural computing front, significant 
progress was made in modeling biological 
neurons and training artificial neural networks for 
pattern recognition and machine learning. Novel 
neural inspired algorithms like deep learning 
revolutionized fields like computer vision and 
natural language processing.33

	 Today, bio computing encompasses a 
diverse array of techniques harnessing DNA, 
proteins, cells, biomolecules and neural networks 
for information processing. Early visionary 
experiments have grown into a thriving research 
arena with conferences, journals and dedicated 
labs around the globe. Ongoing innovations 
promise an exciting future for biologically-inspired 
computation.34–36

Key tools and techniques used in bio computing
	 Bio computing relies on the convergence 
of engineering and biotechnology to design, build, 
and optimize biological substrates for information 
processing and computation. This requires an 
extensive interdisciplinary toolkit to read, write, 
analyze and interface with DNA, proteins, cells 
and tissues.3

	 DNA sequencing tools, such as next-
generation sequencing, enable the rapid and 
cost-effective deciphering of genetic information 
within DNA, facilitating the design of synthetic 
gene circuits. Complementing this, directed 
evolution methods like error-prone Polymerase 
Chain Reaction (PCR) can be employed to 
engineer proteins and enzymes, tailoring them 
to exhibit specific computational properties. 
Meanwhile, rational protein engineering through 
techniques like site-directed mutagenesis refines 
protein structure and function, aligning them 
with precise computational requirements. These 
combined approaches empower researchers to craft 
custom biological components, paving the way 
for innovative applications in synthetic biology, 
biocomputing, and beyond.37–39

	 Gene synthesis techniques provide a cost-
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effective and rapid means to create novel genetic 
constructs for implementing biocomputational 
designs. Researchers can easily order synthetic 
genes from commercial vendors, receiving DNA 
fragments tailored to their specifications. This 
streamlined approach accelerates the development 
of customized biological components, facilitating 
the realization of innovative biocomputing 
applications across various fields, including 
synthetic biology and biotechnology.40 Automated 
liquid handling robotics enable efficient assembly 
of genetic circuits at high-throughput rates. 
Concurrently, CRISPR-Cas9 genome editing 
tools offer precise host cell genome modifications, 
optimizing computational designs by tailoring the 
cellular environment. This synergy of technologies 
accelerates the development of advanced bio-
computational systems and applications, ranging 
from synthetic biology to biotechnology.41,42

	 Microfluidics technology revolutionizes 
bio-computing experiments by offering precise 
control over tiny fluid and cell volumes. 
Microfluidic chips, featuring integrated valves, 
channels, and chambers, enable the creation of 
programmable environments. Researchers harness 
this capability to conduct cellular computing and 
construct intricate biomolecular logic circuits. 
The versatility of microfluidics serves as a pivotal 
tool for advancing bio-computational research 
and applications in diverse fields, ranging from 
synthetic biology and biotechnology to cutting-edge 
biomedical engineering. Nanopore technology is a 
revolutionary approach to DNA/RNA sequencing, 
offering label-free single-molecule sensing. It 
operates through a nanoscale pore in a membrane. 
As DNA or RNA molecules are threaded through 
this pore, changes in electrical conductivity are 
detected in real-time, allowing for the precise 
identification of nucleotide sequences. This 
method eliminates the need for complex labeling 
procedures and provides high-resolution, rapid, and 
cost-effective sequencing. Nanopore technology 
holds great promise for genomics research, clinical 
diagnostics, and various applications requiring 
accurate and efficient molecular analysis.43,44

	 Fluorescence microscopy techniques, 
such as Fluorescence Resonance Energy Transfer 
(FRET) imaging, play a vital role in debugging 
genetic circuits by tracking molecular interactions 
within living cells. FRET relies on the principle 

that when two fluorophores are in close proximity, 
energy is transferred from one to the other, resulting 
in measurable fluorescence changes. By tagging 
molecules of interest with different fluorophores 
and observing their interactions through changes 
in fluorescence, researchers can gain insights into 
the behavior of genetic circuits in real-time, helping 
to optimize and debug their functionality.45 High-
throughput screening tools are instrumental in 
testing extensive libraries of protein/DNA variants 
to identify those with the desired computational 
properties. The mechanism involves subjecting 
these variants to automated, rapid, and parallel 
assays, allowing the evaluation of their functional 
characteristics on a large scale. This screening 
process facilitates the selection of candidates that 
exhibit the most promising computational traits, 
expediting the development and optimization 
of biocomputational designs, such as synthetic 
gene circuits or protein-based computations.46 
Biosensors are pivotal in biocomputing, serving 
as intermediaries that convert biological signals 
into measurable outputs and enable seamless 
interfacing with biocomputing systems. These 
devices typically consist of biological components, 
such as enzymes or antibodies, coupled with 
transducers that translate biological responses into 
electrical, optical, or other quantifiable signals. 
By detecting specific biomolecules or biological 
events, biosensors facilitate real-time monitoring, 
data acquisition, and signal processing within 
biocomputing systems, allowing for dynamic, 
responsive, and precise computational functions 
in various applications.47

	 B i o c o m p u t a t i o n a l  m o d e l i n g  i s 
instrumental in predicting and simulating the 
dynamics of gene circuits, protein interactions, 
and neuron behaviors before experimental 
implementation. Tools like the Systems Biology 
Markup Language (SBML) allow researchers 
to construct detailed mathematical models that 
represent biological system dynamics. These 
models incorporate parameters and equations to 
simulate the behavior of biological components, 
providing insights into how these systems function 
and respond to different inputs, ultimately aiding 
in the design and optimization of biocomputing 
systems and experiments.48–50

	 Ongoing advances in these core tools 
along with innovations in biomaterials, bioprinting, 
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and bioelectronics promise to expand the 
capabilities of bio computing moving forward. The 
interdisciplinary toolkit combining engineering 
and biotechnology principles is key to realizing 
many of the futuristic applications envisioned in 
the field.51–53

Key applications and implementations of bio 
computing
	 Bio computing is catalyzing innovative 
applications across diverse domains including 
biomedicine, smart therapeutics, environmental 
sensing, materials science and hybrid bioelectronic 
devices. Researchers are harnessing the unique 
capabilities of biological substrates to design and 
engineer novel computational systems.
	 In biomedicine, one prominent application 
area is developing systems for early disease 
diagnosis and continuous monitoring. Cancer 
detection systems have been demonstrated using 
artificial neural networks that analyze proteomic 
biomarkers in blood samples. By training on patient 
datasets, these Artificial Intelligence (AI) cancer 
classifiers can identify difficult to diagnose cancers 
like ovarian cancer based on biomarker profiles.54–56 
Neural networks have also shown promise in 
medical image analysis, providing computer-aided 
diagnostics for improved treatment planning.57,58

	 Beyond diagnosis, bio computing is 
enabling smart drug delivery systems. Implantable 
bionanosensors have been proposed using protein 
logic gates to detect multiple biomarker inputs and 
decide molecular actuator functions accordingly. 
This biomolecular calculus, mimicking electronic 
circuits, allows intelligent therapeutic delivery 
tailored to personalized biomarker profiles.59–61 
Portable smartphone-integrated biosensors 
are also being developed for rapid point-of-
care diagnosis.62 Other efforts have explored 
engineering probiotic gut bacteria that sense 
pathogens in the gastrointestinal tract and secrete 
therapeutic compounds as desired.6364

	 In synthetic biology, engineered gene 
circuits and reprogrammed cells are being 
applied for portable and rapid disease screening. 
For instance, researchers designed whole-cell 
biosensors that produce a fluorescent output 
signal in response to the cancer biomarker 
interleukin-6.12,65 Such engineered living cells could 
offer continuous disease monitoring via implantable 
devices. Wearable fluorescent biosensors are also 

being integrated with smartphones for on-site 
diagnosis.66,67

	 Beyond medicine, DNA computing 
circuits have been applied for bio molecular 
analysis automation in Research and Development 
(R&D) labs. Systems have been engineered to solve 
optimization problems like the shortest path for 
analysing fluorescence microscopy images. DNA 
reaction networks that cascade over time act as 
chemical amplifiers for enhancing bioassay target 
detection. DNA tile self-assembly has also been 
leveraged to construct nucleic acid nanomaterials 
for drug delivery.68–70

	 Bio computing is also advancing hybrid 
bioelectronic systems, combining engineered 
biology with electronic interfaces. For example, 
Massachusetts Institute of Technology (MIT) 
designed an AI cancer classifier by using genetically 
engineered E. coli to target cancer biomarkers.71,72 
The engineered bacteria provide molecular input 
data to train an electronic deep learning model for 
diagnostics. Such hybrids integrate the sensing/
processing strengths of both biological and 
electronic substrates. 73

	 Environmental applications include 
engineering phage viruses that detect pollutant 
chemicals via colorimetric reactions and cells 
that luminesce in response to toxins.74 Plant 
nanobionics is creating “green computers” by 
embedding nanomaterials that monitor plant health. 

Fig. 1. Tools and Technologies of Bio-computing
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Fig. 2. Bio-computing Applications

On the materials science front, viruses are being 
engineered to self-assemble into precise 2D and 
3D structures for nanoscale fabrication.75,76

	 These examples highlight the diverse real-
world promise as interdisciplinary bio computing 
transcends the lab bench. Ongoing advances 
in synthetic biology, AI and nanotechnology 
will further expand the application space and 
commercial potential.
Challenges and limitations currently facing the 
field of bio computing
	 One major challenge is  creating 
biocompatible systems that can integrate and 
function effectively within biological environments 
and subjects. Biological tissues present a complex 
milieu of molecules, cell types and interactions 
that engineered systems must adapt to.77,78 
Immunogenicity issues can arise whereby implanted 
bio computing devices trigger unwanted immune 
reactions. Approaches to improve biocompatibility 
include biomimetic designs using natural biological 
materials, bio-inert surface coatings, and localized 
release of immunosuppressant drugs.79–81

	 Programming and encoding complexity 
is another hurdle. Engineering robust gene circuits 
or neural networks requires sophisticated design 
tools, modeling frameworks, and debugging 
cycles.82 Synthetic biology is working to create 
modular, well-characterized genetic “parts” that 
can be predictably assembled. Abstraction layers 
and computer-aided design software also help hide 
low-level complexity. DNA sequence optimization 

algorithms assist in filling design specifications.83,84

	 Wet lab experimentation remains time-
consuming and laborious. Standardizing protocols, 
automation technology like liquid handling 
robotics, and foundries for fabrication can 
relieve workflow bottlenecks.85,86 Microfluidics 
miniaturizes experiments onto chips and allows 
precise environmental control over reactions. High-
throughput screening tools test libraries of design 
variants in parallel.87,88

	 Analysing and characterizing the 
dynamics of engineered networks is non-trivial. 
Researchers are devising mathematical models 
and multi-scale computational simulations to 
predict system behaviours before costly lab work.89 
Advanced microscopy and “omics” tools facilitate 
quantitatively tracking molecular mechanisms.90

	 Maintaining the viability of engineered 
organisms and cells is an issue, as synthetic 
gene circuits add metabolic load. Strategies like 
genome streamlining, component optimization 
for low toxicity, and nutritional feedback controls 
help improve durability. Decoupling designs into 
separate survival and task-based modules also 
helps.11,12,77,91

	 Interfacing engineered systems with the 
complexity of real-world environments remains 
challenging. Bio-hybrid interfaces that connect 
synthetic biology with traditional electronics 
and hardware are still maturing. Onboard power 
sources or wireless power delivery are active 
research areas. Orthogonal communication 
schemes isolate synthetic systems from natural 
biological crosstalk.92,93

	 Safety and ethical concerns exist 
around bio computing applications like human 
augmentation or environmental release.94,95 Robust 
safeguards against unintended effects, molecular 
containment, and reversible engineering are 
important areas of investigation. Policy groups 
also advocate early awareness, monitoring and 
regulation around such engineering.
	 While  s ignif icant  hurdles  exis t , 
researchers are making steady progress through 
foundational engineering principles like 
modularity, model-based design, optimization, and 
characterization. Continued technology innovation 
and interdisciplinary collaboration will aid in 
systematically addressing the challenges on the 
path ahead.
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Future outlook and emerging trends in bio 
computing
	 Looking ahead, bio computing is poised 
to integrate more deeply with fields like artificial 
intelligence, robotics, and the Internet of Things. 
One avenue is developing bio-hybrid AI systems, 
combining biological computing substrates and 
learning algorithms for perception and inference 
tasks. Engineered organisms that synthesize their  
sensors and logic could enable fully autonomous, 
adaptable biocomputers.96–98

	 Within the body, networks of engineered 
cells may one day run physiological regulation 
and repair routines like biological robots. In-
vivo biocomputers could monitor organ health 
and coordinate therapeutic responses, forming a 
distributed treatment system. Nano-bioelectronics 
will miniaturize bio/organic interfaces for seamless 
integration. Implanted neural lace devices could 
allow direct brain-computer communication.12,91,99

	 DNA digital data storage is emerging 
as an ultra-dense, stable alternative to silicon 
memory. Entire datasets, books and videos have 
been encoded as DNA sequences. Integrating DNA 
memory with biological processors will enable 
storing and accessing massive information troves 
for AI. DNA could also allow on-chip training of 
nanoscale neural nets.100,101

	 Cell-free synthetic biology promises to 
expand bio manufacturing capabilities beyond living 
organisms. Printing hybrid bio-electronic materials 
containing engineered proteins and nucleic acids 
may support wearable, self-repairing soft robotics 
for human augmentation. Bio computing could thus 

distribute “enhanced intelligence” ubiquitously via 
engineered biomaterials.102,103

	 Self-organizing cellular systems that 
reshape and reconfigure on command will lead 
to programmable, morphing biohybrid materials 
for drug delivery or tissue engineering. Viral 
engineering for nanofabrication will create 
manufacturing platforms integrating top-down and 
bottom-up processes. Bio computing could thereby 
revolutionize digital fabrication, smart materials, 
and sustainable manufacturing.104–106

	 Protecting privacy and security of 
biometric data will be crucial as human-machine 
biointerfaces become intimate and pervasive. 
Ethical guidelines must shape applications for 
human improvement versus entrenching inequity. 
Overall, bio computing could fundamentally 
reshape our information infrastructure - while 
navigating immense opportunities and challenges 
along the way. Interdisciplinary collaboration, 
public awareness and appropriate regulations will 
help guide responsible progress.107,108

Ethical considerations and issues surrounding 
bio computing
	 As with any powerful technology, bio 
computing carries risks of misuse along with 
immense potential for benefit. A major concern is 
the dual-use potential - capabilities meant for good 
could also be coopted for harmful use by malign 
actors. For instance, technologies for rapid vaccine 
development using synthetic biology could be 
misdirected towards engineering viral bioweapons. 
Strict biosafety measures and oversight are 
necessary to prevent misuse.109–112

Fig. 3. Future outlook of Bio-computing
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	 Augmenting human abilities via neural 
implants or genetic engineering raises important 
ethical questions about human dignity, consent, and 
identity. Policy groups advocate for precautionary, 
step-wise integration of human enhancement 
technologies with ongoing ethical review. Access 
equality is also an issue - such technologies could 
widen social disparities if only accessible to the 
wealthy. 113–115

	 Applications like engineered viruses for 
nanofabrication or environmental remediation 
carry risks of unintended ecological impacts. 
Containment systems that prevent uncontrolled 
proliferation in the environment are critical. 
Tracking and recovery mechanisms should be 
incorporated as safeguards.116,117

	 Protecting the privacy of biological data 
like genomic profiles in biocomputing systems 
is imperative, given the sensitivity of such data. 
Techniques like data encryption, access controls 
and consent policies help secure users against 
violations of informational privacy. 118 
	 Broader societal impacts also need 
consideration. Emerging biotechnologies could 
disrupt economic sectors reliant on conventional 
manufacturing, agriculture, medicine etc. Policy 
foresight and planning will be essential to manage 
disruptions and harness benefits. Bio computing 
may only reach its full potential through open, 
inclusive public dialogue around hopes, concerns 
and what constitutes responsible development.119

	 Researchers are taking proactive steps 
to address ethical bio computing - calling for 
guidelines, risk assessments, red teams, codes 
of conduct, external oversight bodies and 
multidisciplinary perspectives. With diligent, 
ethical foundations guiding its progress, bio 
computing can usher in humanity’s next era of 
technological flourishing.120–122

CONCLUSION

	 In summary, this review has explored the 
emergence of bio computing, the interdisciplinary 
pursuit of harnessing biological substrates 
like DNA, proteins and cells for information 
processing and computation. We examined 
pioneering approaches like DNA computing, 
which leverages parallel molecular reactions to 
solve problems. Synthetic gene circuits and gene 

editing tools enable reprogramming cells into 
adaptive biocomputers. Protein engineering can 
construct molecular logic gates and communication 
circuits. Neural networks build on understandings 
of biological brains for machine learning.
	 These biomolecular and bio-inspired 
techniques showcase nature’s computational 
capabilities and offer alternatives to conventional 
silicon computers. However, significant challenges 
remain around biocompatibility, complexity, 
testing rigors and responsible development 
concerns. Prudent nurturing is vital to bridge the 
gap from tantalizing potential to real-world impact.
	 Looking forward, bio computing could 
transform application domains from biomedicine 
to smart materials, if key technical hurdles are 
overcome. This requires sustaining rigorous 
collaborative efforts across disciplines and 
emphasizing ethical stewardship. In summary, bio 
computing represents an auspicious convergence 
of biology and technology, unlocking new 
computational frontiers by interfacing silicon with 
carbon-based substrates. The decades ahead will 
prove pivotal in carefully charting this biology-
technology frontier.
	 At its core, bio computing signals 
a conceptual fusion between the ancient 
programming inherent in life’s machinery and 
human engineering of biological systems. This 
field warrants enthusiastic nurturing to gently 
integrate engineered constructs within biological 
environments, opening new eras of flourishing. 
With diligent efforts, bio-inspired computation may 
someday emulate nature’s sophistication, ushering 
an organic computational age that advances 
humanity’s condition while stewarding all life.
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