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	 Physiological reaction plays a vital role in the human body. These reactions are 
analysed through Enzyme kinetics using a Mathematical model which helps to predict how 
enzymes behave in living organisms. However, many factors affect the working mechanism of 
biocatalysts (Enzymes). Chemical denaturant creates high disruption to the structure of enzyme 
with time. The determination of enzyme activities with time delivers information on enzyme 
parameters. Here the analysis aims to mathematical study for the development of Enzyme - 
substrates reaction for product formation based on time. So we formulate the model as a system 
of nonlinear differential equations which predicts the behaviour of product formation based on 
Enzyme- Substrate reaction parameters. Compute the threshold value for studying the enzyme 
effectiveness, complexity, and other parameters for the substrate product. Study the stability 
analysis for the ideal product formation and hence derive asymptotically stable solutions for 
the Enzyme- Substrate model with numerical simulation.

Keywords: Asymptotic Behaviour; Kinesiology of Enzymes; Next Generation Matrix Technique(R0); 
System of Non-linear equations for reaction; Stability Analysis; Sensitive Analysis.

	 Most of the chemical transformations 
inside the cell carry proteins called enzymes. 
Enzymes (BIOCATALYSTS) act upon molecules 
called Substrates to generate products rapidly, 
(reversible) deprived of being absorbed during 
the procedure. The whole enzyme molecule is not 
active in catalyzing a chemical reaction. Only its 
active site is active. Enzymes are well-defined by 
their kinetic behavior of binding with the substrate 
for product formation, which is much more 
alluring.1,2

	 Examining the kinetics enzyme is critical 
for understanding cellular systems and enzymes in 
industry. This is introduced in the books by using 
a mathematical curve namely, Rubinow,3 Murray,4 

Segel,5 and Roberts.6 In particular, Kinesiology of 
Enzymes have been deeply subject to the paradigm 
of biological processes proposed by Henri,7,8,9 the 
canonical approach by Michaelis and Menten,10 and 
further developed by Briggs and Haldane through 
Bayesian approach based on the total quasi-steady-
state approximation.11

	 Various simplified analytical Solutions 
of the model use the techniques, such as 
Homotopy Perturbation Technique, Variational 
Iteration Technique, Laplace Transform (LT), 
Danckwort’s expression, and He’s variation 
iteration method.12,13,14 Numerical solutions of 
the model are also based on the Finite Difference 
Technique, HPM, HAM, VIM, ADM,15,16,17,18 etc. 
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	 In order to cope with the exact theatrical 
solution for the enzymatic reaction. The analysis 
aims to study the effect of enzymes on substrates 
for the formation of the product. Formulate 
the normalized model as a system of nonlinear 
differential equations. Compute the threshold 
value to study the effect of enzyme, complex, 
and other parameters on the substrate for product 
formation. The aim is to perform the stability 
analysis for ideal product formation hence, the 
need for asymptotically stable solutions to the 
given model with simulation. The perseverance 
of this work is to derive the numerical solution of 
the system with convergence criteria along with the 
stability analysis. The use of the Next Generation 
Matrix method and calculation of the reproduction 
number for the stability of our model is proceeded 
by the existence of possible equilibrium points with 
their restrictions, followed by sensitive analysis 
using all possible parametric values. We derive 
asymptotically stable solutions to the model with 
simulation.
Mathematical Model Formulation
	 The mathematical formulation of the 
enzyme kinematics problem in biochemical systems 
has been modeled using ordinary differential 
equations. The enzyme binds to the substrate to 
generate an enzyme-substrate complex. Which 
then releases the product and independent enzyme. 
The independent enzyme is then available for a 
different reaction to produce a new substrate. Thus 
the system is written as:
The fundamental enzymatic reaction: 

	 	 ...(1)
Where;  s=[s],e=[e],c=[c]and p=[p] are their 
normalized concentrations in 1 mg.
	 This procedure demonstrates the binding 
of substrate s and the discharge of product p. e is the 
independent enzyme and c is the enzyme-substrate 
complex w1, w2  and w3 are the weight representing 
the reaction of three processes. It is to be ensure that 
substrate binding is reversible but product release 
is not. This chemical reaction, can be converted to 
a mathematical model using the mass action law 
and favorable analysis, the system of non-linear 
reaction equations is represented as follows:14 

	 ...(2a)

	 ...(2b)

	 ...(2c)

	 ...(2d)
 
	 Where w1 is the weight of the positive 
rate of  forming complex, w2 is the weight of the 
reverse(negative) rate constant, w3 is the rate of 
product formation and enzyme release, and c is 
the complex intermediate species. 
	 Consider the normalized initial conditions 
for substrate s, enzyme e, complex c, and product   
p as follows:

s(0)= s0,e(0)= e0, c(0)=p(0)=0	 ...(3)

	 Where, equation (2d) is directly integrable, 
and equations (2b, 2c) are reciprocal of each other.
	 So, adding equations (2b) and (2c),

...(4)
	 Also, the initial conditions in equation (3) 
state that,

e(t)+c(t)= e0		  ...(5)

hence, the system of ordinary differential equations 
reduces, for s and c,14 namely

	
...(6a)

	
...(6b)

	 Where substrate  s and complex c has 
normalized initial conditions s(0)= s0 and c(0)=0
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Fig. 1. Time – Concentration relation

The stability of this System
	 Theorem: A system of a differential 
equation is asymptotically stable if and only if its 
basic reproduction number (R0) is not more than 
or equal to 1.
	 To determine (R0) using Next Generation 
Matrix. FV-1 is next generation matrix, where F 
and V both are Jacobian of S and Λ evaluated for 
Enzyme, Substrate, and Complex at an equilibrium 
point.19,20,21

	 Where, X=(s,c)t, Σ(X) denotes the 
entrance to the compartment and Λ(X) denotes 
transferring to another compartment or leaving the 
system. Then the Jacobian at the equilibrium point 
is given by 

	
As a result,

	 Theorem: If the determinant of a matrix 
is non-zero then its inverse does exist.
Accordingly,

As a result, 

	 The basic reproduction number is defined 
as the magnitude of the largest eigenvalue of the 
matrix K. which is the spectral radius.
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Fig. 2. Time – concentration relation

Fig 3. Time –Concentration relation
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	 Consequently, for all possible positive 
parametric values, R0 of our system is less than 1. 
Hence the system is asymptotically Stable.

Boundedness / Existence of solution: 

	 The mathematical  model  of  our 
arrangement is well established. In fact, it has 
single solution existence and constantly depends 
on the output data. Since we are dealing with the 
humanoid inhabitants, we must ensure that our 
solutions are positive and bound.18

Equilibrium Point and their existence
	 Solving the algebraic equations(7a) and 
(7b), the equilibrium points of System are defined 
to be.

	 ...(7a)

	 ...(7b)
There are three equilibrium points:

1. exists provided the following 
conditions are satisfied: w1 s+ w2+ w3≠0

2. exists provided the following 
conditions are satisfied: -w1 e0+w1 c≠0

3. exists provided 
the following conditions are satisfied: 2w1 w2+ w1 

w3≠0  and –w1 e0+w1 c≠0

Stability Analysis
	 The local  s tabil i ty behaviour of 
equilibrium points is determined by eigenvalues 
of corresponding Jacobian Matrix.22,23,24,25

	 Theorem: If all the Eigenvalues of a n ×n  
matrix are negative,(values being real) then the 
equilibrium point is asymptotically stable.
	 Theorem: If the real part of all the 
Eigenvalues of a n ×n matrix are negative, (values 
being complex) then the equilibrium point is 
asymptotically stable.
	 The general Jacobian Matrix M for our 
model (7a) and (7b) is given as:

	 Let Mi, Where i=1,2 & 3 be the matrix 
evaluated at the equilibrium point Ei  where i=1,2 
& 3.

Then the matrix  M1 evaluated at the equilibrium   
E1 is represented as follows:

Since, the matrix M1 has negative Eigen values 
under the condition,

 Ei is a stable equilibrium point.

	 Again, the matrix M2 calculated at the 
equilibrium   E2 is characterized as follows:

	 As the matrix M2 contributes the negative 
real part of its complex Eigen values under the 
condition: 

is a stable equilibrium point.
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	 Now, M3  be the matrix evaluated at the 
equilibrium  E3 is symbolized as follows:

	 Since,  the matrix M3 contributes 
the  nega t ive  rea l  par t  o f  i t s  complex 
E i g e n  v a l u e s  u n d e r  t h e  c o n d i t i o n : 

 is a stable equilibrium point.

Sensitive Analysis
	 On considering the initial conditions 
to be equal (e(0)=s(0)=1 mg) the corresponding 
parametric values are measured as follows: 
	 The ranking is provided as per the time 
consumption for product formation. Keeping 
parameter w1    constant, parameter w2  smaller than 
w1  and w3 bigger than w1 than the time consumption 
for product formation is minimum so it is ranked 1. 
Making parameter  w3 constant with w2 bigger and  
w3 smaller turns up to maximum time consumption 
and hence ranked 5. Similarly, other possibilities 
are ranked accordingly. It is important to note 
down that taking any parametric values to be non 
– positive, it results to the failure.

Result and Discussion

	 Since minimum time consumption for 
product formation is on keeping the parameters 
to be fixed at w1=2,w2=1,w3=3. The change in 
enzyme and substrate concentration is studied for 
this hypothesis as follows:
	 The initial concentration of both enzyme 
and substrate is taken to be equal (e(0)= s(0)= 1mg).
	 The initial concentration of enzyme is 
less than that of substrate (e(0)= 0.8 mg and  s(0)= 
1mg).
	 The initial concentration of enzyme is 
more than that of substrate (e(0)= 1 mg and  s(0)= 
0.8 mg).

	 It is noted that, while compelling 
concentration of enzyme to be smaller than that of 
substrate (e(0)=0.8 mg,s(0)=1 mg) then constant 
product formation is after 5 seconds. And if 
concentration of enzyme and substrate both equal 
(e(0)=s(0)=1 mg)  then constant product formation 
is later 4 seconds. Wheras for concentration of 
enzyme to be more than that of substrate (e(0)=1mg 
,s(0)=0.8 mg) then again time consumption is more 
than 4 seconds.	

Table 1. Value of the model parameters in enzymatic reaction for product formation

No.	 Parameter w1	 Parameter w2	 Parameter w3	 Relation	 Rank as per Time taken

1	 Fixed	 >	 <	 w3< w1<w2	 4
2	 Fixed	 <	 >	 w2< w1<w3	 1
3	 <	 Fixed 	 >	 w1<w2<w3	 3
4	 >	 Fixed	 <	 w3< w2<w1	 3
5	 <	 >	 Fixed	 w1<w3<w2	 5 
6	 >	 <	 Fixed	 w2<w3<w1	 2

CONCLUSIONS

	 In this paper, it is revealed that the 
experimentally observed enzyme–substrate 
relationship is consistent with theatrical 
calculations. Using the parametric values from 
the graph, the Reproduction Number is calculated 
as -0.4 which is the threshold value for product 
formation. Further the stability analysis carried out 

with constant initial conditions stated that, variation 
in rate of constants w1, w2  and w3 do affects the 
time consumption for product formation. It is 
inferred that w1 < w2 < w3 consumes the minimum 
time span for product formation whereas w1 < w3 
< w2 takes the maximum time for the same. Also, 
it is observed that taking any of the parametric 
value to be negative tends to the failure of product 
formation. On applying restrictions to the initial 
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conditions, it is inferred that enzyme concentration 
must be more than or at least equal to the substrate 
concentration, for ideal product formation. 
Whereas, the concentration of enzyme to be less 
than that of substrate consumes more time for 
product formation. 
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