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Curvelet transform for de-noising Magnetic Resonance images corrupted with
Rician noise using a newly proposed technique called beta-trim shrinkage. In this paper
beta-trim shrinkage is combined with Bayesian thresholding technique to recover the
image corrupted with noise. The classical wavelet transform codes homogenous regions
effectively. However for improved image perception edges need to be preserved. Curvelet
transform is well suited for edge preservation. Curvelet transform offers a sharp detection
of linear and curvilinear features thus providing visually high-resolution images.
Experiments were performed on several images. Results show that a significant level of
noise is reduced by the proposed beta-trim method using Bayes thresholding rule when
compared to classical methods. An appreciably high value of Peak Signal to Noise Ratio
(PSNR), Structural Similarity Index (SSIM), Correlation Coefficient (CC) and fairly lesser
value of MSE (Mean square error) are  obtained by the proposed method.
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The purpose of image de-noising is to
reduce the noise level in the image and to restore
the original image. Most of the images are
corrupted by additive White Gaussian noise.

A shrinkage method compares empirical
wavelet coefficient with a threshold and is set to
zero if its magnitude is less than the threshold
value3. The threshold acts as an oracle, which
distinguishes between the significant and
insignificant coefficients. Shrinkage of empirical
wavelet coefficients works best when the
underling set of the true coefficients of f is sparse.
In wavelet shrinkage, energy of the function will
be concentrated in a few coefficients3-6. Therefore,
nonlinear function in wavelet domain will retain

few larger coefficients representing the function
while the coefficients below threshold will be
reduced to zero. The development of practical
algorithms requires that one choose the appropriate
shrinkage rule and an equally appropriate threshold
of wavelet coefficients empirically. The choice of
shrinkage rule plays a vital role in image de-noising.
The most frequently used shrinkage methods are
hard and soft.
Wavelet Transform

Extensive research has been carried out
on image de-noising using wavelet transform.
Initially linear methods using Weiner filter [22], were
deployed. These methods though simple had the
disadvantage of over smoothening. Donoho and
others put forward soft and hard  wavelet de-noising
methods [11-12]. In the above mentioned methods
the image data is transformed into wavelet space
in the form of wavelet coefficients. The coefficients
at the coarsest scale are left intact, while the
coefficients at all the other scales are threshold via
different thresholding techniques. Other methods
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based on partial differential equations and
Independent Component analysis has also gained
much significance [4].

Wavelet Transform decomposes the
signal into a number of sub bands with approximate
(low frequency) and detail coefficients (high
frequency).  An appropriate thresholding rule is
applied to coefficients in the detail sub-bands. The
de-noised image is then obtained by applying
inverse wavelet transform. Discrete Wavelet
Transform has made a high impact in the field of
signal processing, image processing and several
other applications.

The main drawback of wavelet is that it
lacks sparse representation along  C2 curve.
However the usage of wavelet transform has
reduced to a great extent due to poor directionality.
Complex wavelets were introduced to overcome
this disadvantage. The complicated design process
involved, coupled with poor reconstruction
properties and filter design has undermined its
usage [20,35]. The Dual tree complex wavelet
Transform is characterized by features such as
directional selectivity (six directions) much better
when compared to DWT (3 directions),
approximate shift invariance, limited redundancy
and efficient O(N) computation [25-26]. Though
there was an improvement in directional selectivity
still it is limited. Wavelets were not the best for
sparse representation of natural images. Hence
Multi scale Geometric analysis was proposed and
developed. Several multiscale directional
transforms have been proposed. These transforms
are characterized by anisotropy and high
directionality. These transforms include Ridgelets
[17,21], Curvelets [8,14], Contourlets [24],
Directionlets [33], Steerable Wavelets [16, 34],
Gabor Wavelets [32], Wedgelets [7], Surfacelets
[37], Bandlets [15, 30], Platelets [27] and Shearlets
[10, 23].

Steerable wavelets are translational
invariant and rotation invariant with respect to the
position and orientation of the image. It provides a
linear, multi-scale, multi-orientation image
decomposition. The directional derivative
operators, which form the basis functions of
steerable pyramid, can be altered in size and
orientations. The most important advantage of
steerable wavelets is the polar-separable
decomposition in the frequency domain, which

allows independent representation of scale and
orientation. However it has the disadvantage of
complex filter design and the representation being
overcomplete by a factor of 4k/3, where k represents
the number of orientations.

Gabor wavelets are obtained from Gabor
kernel function by Time-Frequency shifts. Gabor
function is a product of elliptical Gaussian and a
complex plane wave.  They play a major role in
many computer vision applications, modeling
biological vision and texture analysis. Applications
of Gabor wavelets suggested that the precision in
resolution achieved through redundancy may be
a more relevant issue in brain modeling, and that
orientation plays a key role in the primary visual
cortex. However, 1D or 2D   Gabor wavelets do not
form orthonormal bases. They are called non-
orthogonal wavelets.

Do and Vetterli constructed Contourlet
by combining Directional filter bank with Laplacian
pyramid [24]. The directional filter bank has high
directional selectivity and provides effective
directional decomposition of 2-D signals, which
makes it popular in image processing applications.
Contourlet transform is an efficient multiscale
geometric analysis tool, which aims at better image
representation of 2-D images. Contourlet transform
provides near optimal representation of images as
it allows for flexible number of directions at each
scale. The main difference between Contourlet and
Curvelet transform is that Contourlet transform is
based on discrete rectangular grids. However when
compared to Curvelet the Contourlet functions lead
to more oscillations along sharp edges leading to
artifacts in denoising and compression.

Surfacelets are higher dimensional
extensions of Contourlets. In case of Surfacelet,
N-directional filter banks (NDFB) are combined with
multiscale pyramid. This is similar to Contourlet
transform in which 2-D DFB is combined a
multiscale decomposition. Surfacelets efficiently
extracts and represents surface-like singularities
in multidimensional data. Surfacelets are used in a
wide range of applications such as computer vision
analysis biomedical image processing and video
processing [37].

Wedgelets are functions with a variety of
locations, scales and orientation. Wedgelets find
application in optimal represention of objects in
the horizon model.



707BEGUM & POORNACHANDRA, Biosci., Biotech. Res. Asia,  Vol. 12(1), 705-716 (2015)

Bandlets are obtained by applying local
orthogonal transformation to wavelet coefficients.
The bandlet transform exploits the anisotropic
regularity (which appears along edges in images)
by constructing orthogonal vectors that are
elongated in the direction where the function has
a maximum of regularity [15, 30]. Similar to other
directional transforms platelets are capable of
representing edges at various scales, locations and
orientations. Platelet representations are well suited
for Poisson data. Due to speedy computation they
find applications in variety of fields such as
confocal microscopy, infrared Imaging, image
restoration, and emission tomography [27].

Unlike Curvelets, In case of Shearlets the
mother Shearlet function is characterized by
parameters such as scale, translation and shear
parameter. Of these, the shear parameter captures
directional features like orientations of curves in
images while providing sparse decompositions.
Both the transforms are found to be similar in
discrete implementation and decay rates [10,23].

Directionlet transform is used to capture
anisotropic geometric structures in multiple
directions from a low-resolution image. Integer
lattices are applied to scaling and filtering
operations. Since all the basic operations are one
dimensional (1-D) the transform retains the
separability and simplicity of standard two
dimensional (2-D) wavelet transform. Furthermore,
it provides an efficient tool for nonlinear
approximation of images. Recently Curvelet
transform has emerged as a widely used tool for
image de-noising.
Ridgelet transform

In order to handle higher dimensional
singularities in 1999, Candes and Donoho
proposed Ridgelet transform. Ridgelet transform
is an anisotropic geometric transform capable of
optimally representing straight-line singularities.
These first generation Curvelets [13] include sub-
band decomposition followed by Ridgelet analysis
[17, 21] of the radon transform of an image. Wavelet
transforms are good at point singularities, for line
singularities, Ridgelet transform was introduced.
The line singularity on applying radon transform
becomes point singularity. Wavelet transform can
then be used handle this point singularity. This is
the main idea behind Ridgelets.

Let a,b,  represent a bivariate ridgelet in

R2 with the parameters indexed by ‘a’ > 0 a scaling
parameter, ‘ ’ an orientation parameter and ‘b’ a
location scalar parameter. The ridgelet function is
then given by

...(1)

This function is constant along the lines.
Wavelet is transverse to these ridges. Given an

integrable bivariate function

f (x, y)

, then its

ridgelet coefficients are given by

...(2)

Radon Transform
Radon transform in two dimensions, is

the integral transform consisting of the integral of
a function over straight lines. The Radon transform
finds applications in computed axial tomography,
electron microscopy, reflection seismology and in
the solution of hyperbolic partial differential
equations [6,18-19].
The radon Transform for a function  is given by

...

...(3)
The main disadvantage of Ridgelets is

that they can very well represent objects with
straight line singularities but they lack in
representing local line and curved singularities.
Curvelet transform

In order to overcome these disadvantages
second generation Curvelets were introduced. The
second generation Curvelets is simpler and
transparent. This new architecture excludes the
use of Ridgelet transform. Curvelet transform can
implemented using two distinct digital
implementations namely, Unequally-Spaced Fast
Fourier Transform (USFFT) and the Wrapping-
based Transform. Both the versions are fast,
invertible and less redundant [8,14]. However the
two variants differ by the choice of the spatial grid
used to translate Curvelets at each scale and angle.
USFFT uses a decimated rectangular grid tilted
along the main direction of each Curvelet. In case
of USFFT Curvelet coefficients are obtained by
irregularly sampling the Fourier coefficients of an
image. The second method includes wrapping the
spatially selected Fourier samples. Even though
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similar results are obtained using both the methods,
the latter version is used throughout this paper
due to simplicity in implementation.
Continuous Time Curvelet Transforms

Consider a spatial variable ‘x’, a frequency
domain variable ‘ù’ and polar coordinates  ‘r’ and
‘è’ in the frequency domain. Let  and  represent
radial and angular windows respectively. W takes
positive real arguments with r “ (1/2, 2) and V takes
real arguments with t “ [-1, 1].
These windows obey the admissibility condition

...(4)

Now, for each j e” , the frequency window given
by   in the Fourier domain is given by

...(5)

Where  

 j / 2 

  represents the integer part of  j/2.

Digital Curvelet transform via Wrapping
The above digital implementation is

based on the choice of spatial grid used to translate
Curvelets at each scale and angle. Instead of a
tilted grid a regular rectangular grid is used to
translate Curvelets. The spatial grid used to
translate Curvelets in this case is same for every
angle within each quadrant, yet each Curvelet
undergoes proper orientation. Hence this version
of the transform is much simpler to implement.

The algorithm for the implementation of
FDCT via wrapping is as follows:

1. Consider a two dimensional function 

 f [t
1
, t

2
]

,

 0  t
1
, t

2
  , in the Descartes coordinate. The

Fourier samples  f̂ n
1
,n

2
 ,  n / 2  n

1
, n

2
 n / 2

are obtained on applying 2D FFT.

2. The Fourier samples  f̂ for each scaleand  j angle

 l

are multiplied by the window function  Û j ,l  ,

to obtain the product   

3. The product is then wrapped around the origin

to obtain  

 Where the range for  and  is now  and  for
in the   range from

4. Apply 2D IFFT to each   and obtain the

discrete coefficients  cD ( j, l, k )  .

The above procedure is as fast as

 O(n2 log n) . In the wrapping approach both forward

and inverse operations are performed in  O(n2 log n)

operations.
Objective

Almost every image is corrupted by noise.
De-noising plays a vital role in many of the current
research areas. Image De-noising aims to recover
an original image from a noisy observation
corrupted by an additive white Gaussian noise

(AWGN). Assume  yi , j  to be the original  K K  image

where 

 i, j 1,2,.......K

 corrupted by AWGN  ni , j

...(6)

The goal of de-noising is to estimate  of
by reducing . The MR Images are however
corrupted by Rician noise, which is Multiplicative
in nature
Noise in MRI – Rician noise

 Magnetic resonance images are
invariably corrupted by random noise during
transmission and acquisition process. Noise in
MRI trammels clinical and diagnostic analysis.
Image intensity in magnitude MR image follows
Rician distribution.  MRI uses magnitude images
as they are devoid of the artifacts due to phase
information. MR magnitude images are obtained
by calculating the magnitude for each and every
pixel, from real and imaginary images. This mapping
is however,  non-linear and therefore does not
follow Gaussian distribution. Hence the bias due
to Rician distribution needs to be corrected.

MR Images comprise of real and
imaginary components with similar variance and
Gaussian noise distribution. The magnitude MR
images computed from the real and imaginary parts
follow Rician distribution. The Rician noise built
from Gaussian is given by:

...(7)

where, represents the original image.
represents the imaginary component and
represents the real component.represents the
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standard deviation of the Gaussian noise. Then
the noisy image is computed as follows

...(8)

The bayesian threshold
Threshold selection plays a major role in

de-noising technique as, a very low value of
threshold will lead to noise retention and a high
value of threshold will results in smoothening
effect. Several methods of selecting threshold have
introduced and investigated [28-29]. Bayesian
approach is an important thresholding technique,
which has been attracting attention due to its
adaptive nature. Bayesian approach provides the
means to incorporate prior knowledge in data
analysis. Bayesian approach is based on posterior
probability. Bayes law states that the posterior
probability is proportional to the product of the
likelihood and the prior probability.  In this approach
the threshold value depends on noise variance
and standard deviation of the signal. The Bayes
method is effective for images contaminated by
Gaussian noise. In this approach noise variance is
estimated by a robust median estimator [5,31]. In
case of wavelet transform the robust median
estimator  is expressed as

...(9)

In case of wavelet transform the
orientations are limited to three. However Curvelet
transform has more orientations with tight frame.
Curvelet coefficients are expressed in the form of
cells. Hence in case of Curvelet transform the
robust median estimator is expressed as follows

...(10)

Signal variance is estimated as  ̂
x
2  max(̂

u
2 ̂ 2,0)

Where  ̂
u
2  is the estimate of variance of

observations.
Bayes threshold can be obtained as follows

...(11)

The soft shrinkage technique with Bayes threshold
is given as

While the hard shrinkage technique with
Bayes threshold is given as

...(13)

Of the two methods, soft shrinkage
technique is more effective when compared to hard
shrinkage technique. The hard shrinkage technique
is not continuous at the threshold resulting in
oscillations in the recovered signal. soft shrinkage
technique also has some disadvantages. In case
soft shrinkage technique there are deviations
between image coefficients and threshold
coefficients, which in turn results in the lack of
accuracy in the recovered signal.

In 2009 a new shrinkage technique called
extrim shrinkage was introduced [1-2].

The ex-trim shrinkage model is expressed
as:

...(14)

The factor ‘n’ represents the scaling
parameter, which scales the shrinkage function to
the image dimensions.

The ex-trim shrinkage technique was
formulated with the perspective of improving the
denoising technique without threshold
requirement. The ex-trim shrinkage includes non-
linearity and thus excludes the disadvantages of
linear methods such as soft and hard shrinkage
functions. The point wise distribution of ex-trim
shrinkage is comparable with soft hence it retains
the same function stability of soft shrinkage model.
However extrim shrinkage is not included in the
experimental analysis due to the absence of
threshold and incompatibility of extrim shrinkage
in Curvelet domain. Hence in this paper a new
shrinkage technique is proposed.
beta-trim Shrinkage

The newly proposed technique namely,
beta-trim shrinkage is based on a set of exponential
functions given in equation (15). In case of beta-
trim shrinkage, the insignificant empirical
coefficients are shrunk in a non-linear manner
using the following equation.

...(15)

...(
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Where  represents the Bayesian
threshold. The above equation shows that it
involves exponential function similar to extrim
shrinkage. However it involves a Bayesian
threshold. The point wise distribution functions
of soft, hard, extrim and beta-trim are shown in
figure 1. From the figure it is found that though
beta-trim function includes an exponential
function similar to extrim shrinkage, its distribution
function resembles soft shrinkage function.

However the slope of beta-trim is
different when compared to soft shrinkage
technique. In soft and hard thresholding linear
filtering is used to de-noise the image. Linear de-
noising methods are not so effective when
transient non-stationary wide-band components
are involved since they have similar spectrum as
that of the noise. Most of the shrinkage methods
rely on the basic idea that the energy of a signal
(with some smoothness) will often be concentrated
in a few coefficients while the energy of noise is
spread among all coefficients. Therefore, the
nonlinear shrinkage function will tend to keep a
few larger coefficients representing the signal while
the noise coefficients will tend to reduce to zero.
Thus in the proposed technique nonlinearity is
introduced. Another important advantage of beta-
trim shrinkage is the smooth transition of the curve
in the region, which tries to shrink the insignificant
coefficients towards zero. The distribution
characteristic of beta-trim shrinkage is an adaptive
one. As the noise tends to increase, larger number
of redundant empirical coefficients is shrunk to
zero on the contrary lesser number of coefficients
is shrunk, as noise tends to reduce. The de-noising
procedure is explained in figure 2.

The major advantage of beta-trim
shrinkage is its near optimal restoration of image,
high noise rejection capability and its functional
stability. beta-trim shrinkage works as function of
exponential functions, with a pointwise distribution
function similar to that of soft shrinkage.
Experiments and parametric analysis

The test includes three different images,
corrupted by Gaussian noise. In this test the
following methods were implemented for de-
noising.
· soft shrinkage using bayesian threshold
· hard shrinkage using bayesian threshold
· Proposed shrinkage using bayesian threshold

In this section we use Curvelet based de-
noising using beta-trim shrinkage in order to
recover the image. We consider three 8-bit gray
scale Brain MR images for the experiment. The
noisy images were tested with the above-
mentioned de-noising techniques and the quality
of the recovered image was estimated. The quality
of the image was determined using the following
parameters namely Peak Signal to Noise Ratio
(PSNR) , Mean Square Error (MSE) Structural
Similarity Index (SSIM) and Correlation Coefficient
(CC). The quality metrics thus obtained are listed
in Tables 1-6.
The PSNR is given by

                           ...(16)

The MSE is given by

... (17)

Structural Similarity Index (SSIM) gives the
structural similarity between two images

...(18)
The Correlation coefficient (CC) is given by

...(19)
Where
M -   width of the image
N -   height of the image

),( jiy  -   Original image

),(ˆ jiy  -   de-noised image


y  - Standard Deviation of the original image


ŷ  - Standard Deviation of the De-noised image


yŷ  - Covariance of y and 

ŷ

C
1
 (k

1
L)2 and C

2
 (k

2
L)2 two variables to stabilize

the division with weak denominator

L  - Dynamic range and 

k
1
 0.01

and k
2
 0.03
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M,N - Image Dimensions.


f
,

f - Mean and standard deviation of the

foreground region


b
,

b
 -Mean and standard deviation of the

background region


h
,

h
- Mean and standard deviation of the

homogenous region
A perceptually good quality image has a

very high PSNR value. Experimental results show
that a high PSNR value is obtained for the proposed
method for various noise levels. Table 1, 3 & 5
indicate that the proposed beta-trim technique
generates high PSNR values even at very high
noise levels. The PSNR values of both soft and
hard shrinkage techniques are much lesser in
comparison to the proposed beta-trim technique.

The table also depicts the consistency of the
proposed technique at high noise levels.

MSE refers to the noise rejection
capability of the de-noising method. MSE value
should be as low as possible. A low value of MSE
leads to an exact replica of the original image. It is
inferred from Table 1, 3 & 5 that the MSE values
obtained for beta-trim shrinkage are lesser when
compared to the existing methods. It can be found
that the proposed method is highly effective at
high noise levels.

The SSIM is an image fidelity measure,
capable of differentiating the structural and non-
structural distortions in an image. While non-
structural distortions such Gamma distortions,
luminance, contrast and spatial shift do not affect
structure of the system, Structural distortions such
as noise, blur and glossy compression tend to

Table 6.

Parametric     Noise Variance 10 20 30
Results

MRI-3 MSSIM hard 0.70 0.61 0.48
soft 0.80 0.70 0.62
beta-trim 0.87 0.90 0.76

CC hard 0.985 0.906 0.823
soft 0.985 0.914 0.858
beta-trim 0.989 0.954 0.914

Table 1.

Parametric     Noise Variance 10 20 30
Results

MRI-1 PSNR hard 28.1 22.1 18.5
soft 28.2 22.2 18.6
beta-trim 30.2 26.1 24.4

MSE hard 100.2 404.9 902.4
soft 99.9 404.0 901.2
beta-trim 61.7 159.3 237.6

Table 2.

Parametric     Noise Variance 10 20 30
Results

MRI-1 MSSIM hard 0.76 0.67 0.48
soft 0.84 0.78 0.62
beta-trim 0.92 0.90 0.85

CC hard 0.995 0.925 0.855
soft 0.994 0.935 0.874
beta-trim 0.996 0.963 0.931

Table 3.

Parametric     Noise Variance 10 20 30
Results

MRI-2 PSNR hard 28.18 22.12 18.55
soft 28.19 22.13 18.56
beta-trim 29.44 24.98 22.78

MSE hard 99.83 402.5 902.84
soft 99.67 402.2 902.26
beta-trim 79.01 240.8 428.23

Table 4.

Parametric     Noise Variance 10 20 30
Results

MRI-2 MSSIM hard 0.74 0.65 0.42
soft 0.81 0.74 0.59
beta-trim 0.90 0.88 0.81

CC hard 0.994 0.914 0.846
soft 0.994 0.928 0.862
beta-trim 0.995 0.961 0.920

Table 5.

Parametric     Noise Variance 10 20 30
Results

MRI-3 PSNR hard 28.06 22.16 18.54
soft 28.07 22.17 18.55
beta-trim 29.36 25.04 22.70

MSE hard 99.62 397.77 904.76
soft 99.36 397.18 903.81
beta-trim 74.89 205.96 342.34
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distort the image significantly. Human visual
system tends to be highly sensitive to structural
distortions, while non-structural distortions can
be compensated. Under such condition retention
of signal structure becomes an important image
quality metrics. Table 2, 4 & 6 indicate that the
proposed shrinkage technique is highly resistant
to structural distortions at both high and low noise
levels. The Mean SSIM (MSSIM) values of the
proposed method are higher than he existing
techniques.

Correlation coefficient is a statistical
measure of how well the De-noised image follows

the trends in the original image. A high value of
correlation coefficient indicates a stronger level of
relationship between the original and de-noised
images. It can be inferred from Table 2, 4 & 6 that
the proposed is highly effective in maintaining high
correlation coefficient. When compared to hard
and soft shrinkage techniques, the proposed
method maintains a high level of correlation
coefficient.

MSE refers to the noise rejection
capability of the de-noising method. The MSE value
should be as low as possible. Table.1, 3 & 5 gives
a detailed view of the PSNR and MSE values for
different noise levels for the three different MR
Images. It is inferred from the table (1, 2 & 3) the
MSE values obtained for beta-trim shrinkage are

Fig.1. The characteristic shrinkage curve for different
shrinkage techniques

Fig. 2. Block Diagram of Basic De-noising method
using Curvelet Transform

Fig.3. Comparing the performance of soft, hard and beta-trim  with  ó=20.
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lesser to those of the soft and hard shrinkage
techniques. It can be found from the tables that
even at high noise levels the MSE values of the
proposed shrinkage technique are maintained at
low values. This indicates the stability of the
proposed beta-trim shrinkage technique.

Fig.4. Comparing the performance of soft, hard and beta-trim  with  ó=20.

Fig. 5. Comparing the performance of soft, hard and beta-trim  with  ó=20.

RESULTS AND DISCUSSION

The experiments were conducted on
several images, some of them are discussed here.
We consider three 512 x 512 Magnetic resonance
images corrupted by Rician noise. The simulation



714 BEGUM & POORNACHANDRA, Biosci., Biotech. Res. Asia,  Vol. 12(1), 705-716 (2015)

Fig. 8. MSSIM versus Noise Variance

Fig.6. Brain Image (a).PSNR versus Noise Variance Fig.7.  MSE versus Noise Variance

Fig.9. Brain Image (a).Correlation
Coefficient versus Noise Variance

was conducted for the different noise levels ranging
from 10% to 30% using different shrinkage
techniques. In Fig.3, 4 and 5 we compare the de-
noised images obtained by applying different
shrinkage techniques with a noise level of 20  .
The quality of the de-noised image was found to
be better, PSNR, MSSIM & Correlation Coefficient
values higher, MSE values appreciably lower, were
obtained on applying beta-trim when compared
to its counterparts hard and soft shrinkage
techniques.

Sharper and visually high quality images
are obtained on applying beta-trim shrinkage. We
can infer from figure (3, 4 & 5) that noise speckles
in case of beta-trim are much lesser when
compared to other shrinkage techniques. It can
also be found that edges are captured very clearly
and there is no smoothening or blurring effect. To
illustrate the performance of the proposed method,
PSNR, MSE, MSSIM & Correlation coefficient were
plotted versus different noise levels for all three
shrinkage functions (figures 6-9). A sample MR
Image MR-1 is used for this evaluation. It is evident
from the figures that the PSNR, MSSIM &

Correlation Coefficient values obtained using beta-
trim shrinkage are much higher than soft and hard
shrinkage and the difference keeps increasing as
the noise levels increase. Thus beta-trim
shrinkage performs consistently even for high
noise variance values. In case of figure 6 & 7 the
plots for PSNR and MSE values of soft and hard
shrinkage techniques coincide with each other
since the difference between the corresponding
values is very less.

CONCLUSION

Curvelet transform based image de-noising using
beta-trim shrinkage was proposed and compared
with hard and soft shrinkage techniques. In all the
cases the adaptive Bayesian threshold was used.
The proposed method significantly reduces noise
while preserving the features in the original image.
Experimental results show that the PSNR values
obtained for beta-trim shrinkage are much higher,
more robust and consistent. In addition, the image
perception in case of beta-trim shrinkage is sharper
and better than soft and hard shrinkage techniques.
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The Low MSE values obtained in beta-trim
shrinkage show that the proposed beta-trim
shrinkage technique has a high noise rejection
capability and is capable of recovering the original
image even at high noise levels. The proposed
technique proves to be distortion resistant with
high SSIM values. The higher values of correlation
coefficient indicate higher signal retention
capabilities. Thus the proposed s-trim method
proves to be a simple, efficient method in
eliminating noise from Magnetic Resonance
Images. The comparison on different quality
metrics shows its functional capability of improved
performance when compared to the existing
methods. A lot of research is being carried out in
restoring Optical Coherence Tomography (OCT)
images corrupted by speckle noise. The Proposed
method can be implemented to enhance such
medical diagnosis. The De-noising process can
also be enhanced using Graphics Process Unit
(GPU) thereby accelerating the algorithm and
making it applicable for clinical purposes.
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