Development and Validation of HPTLC SIAM for Furosemide and Spironolactone

Suvarna S. Vanjari* and Tushar A. Deshmukh

TVES's, Hon. Loksevak Madukarrao Chaudhari College of Pharmacy, Faizpur, Jalgaon- 425503, Maharashtra, India.

http://dx.doi.org/10.13005/bbra/3125

(Received: 16 March 2023; accepted: 19 May 2023)

"Diuretics," like spirolactone and furosemide, help the kidneys eliminate excess water. It also reduces fluid-induced hypertension and maintains blood potassium levels. Both Furosemide (FRU) and Spironolactone (SPL) can be measured at the same time with the help of HPTLC chromatographic method that have been shown to be very selective and accurate. There are a number of causes of edema, and FRU can help with all of them, including hepatic cirrhosis, chronic congestive heart failure, and excessive blood pressure. Heart failure and ascites caused by hepatic diseases are commonly treated with spironolactone due to its properties as an aldosterone antagonist and potassium-sparing diuretic. HPTLC methods were developed in this research to determine FRU and SPL simultaneously without using the solvents generally needed in chromatographic procedures. The proposed HPTLC approach stood out as an analytical method for quality control laboratories due to its speed, low cost, and ability to concurrently determine the target chemicals with a small number of solvents. The selectivity, accuracy, and reproducibility of the procedures for the simultaneous determination of the pure and mixed drug forms studied were further confirmed by statistical analysis.

Keywords: Spironolactone, Furosemide, HPTLC, HPLC, and Validation.

In order to lessen the amount of fluid that is retained in the body, loop diuretics such as Furosemide (FRU) are taken. 4-Chloro-2-[(FRUan-2-ylmethyl) amino] The IUPAC designation for this compound is 5-sulfamoylbenzoic acid. It is acknowledged as a legitimate medication in a variety of pharmacopoeias. There are a variety of generic names for FRU, including Furosemide, Aisemide, Beronald, Desdimin, and Lasilix, amongst others. Conditions such as hypertension, chronic congestive heart failure, and edema caused by hepatic cirrhosis are all able to benefit from the application of FRU¹⁻². Both spirolactone and furosemide are examples of the class of medications known as "diuretics," which are commonly used to assist the kidneys in excreting excess water from the body. In addition, it prevents hypertension, which is defined as high blood pressure that is brought on by the retention of fluid, and it maintains a healthy potassium balance in the blood^{3, 4}.

Heart failure and ascites due to hepatic diseases are two of the most common indications for the use of spironolactone (SPL; 17-hydroxy-7-mercapto-3-oxo-17-pregen-4-ene-21-carboxylic acid—lactone acetone). It is a diuretic that spares potassium and acts as an antagonist of aldosterone.

*Corresponding author E-mail: vanjarisuvarna19@gmail.com

This is an ⁽²⁾ Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Published by Oriental Scientific Publishing Company © 2023

It is imperative that both medications be taken at the same time in order to mitigate the negative effects of hypokalemia brought on by FRU. A variety of different analytical methods for identifying the presence of both drugs were discovered as a result of the search for relevant literature⁵⁻⁷. Calculations of FRU were made using a variety of analytical methods, such as spectrophotometry, thin-layer chromatography, spectrofluorimetry, and high-performance liquid chromatography. Furosemide is the first loop diuretic ever developed; hence it is the one that sets the standard. In addition to these side effects, FRU may also cause hyponatremia, hypokalemia, hyperuricaemia, paresthesis, cloudy vision, and orthostatic hypotension⁸⁻¹⁰.

704

Several methods for the determination of Furosemide in bulk, in pharmaceutical samples, and in biological samples^{11, 12} have been published as a result of this study. In addition to or instead of other medications, these methods can be utilized. In this study, HPTLC strategies were created for the concomitant measurement of FRU and SPL. These methods did not require the use of the solvents that are customarily necessary for chromatographic operations. The development and validation of HPTLC SIAM for the diuretic medications furosemide and spironolactone were the aims of this work.

MATERIALS AND METHODS

The Camag HPTLC System was used in this study. For this procedure, you will need a UV-Visible Double beam spectrophotometer, a Hamilton syringe (100 ul), a Camag TLC Scanner 3, Win CATS software V- 1.4.2, and a Linomat -5 sample applicator (Jasco Model V-730 with a single Monochromator). All of these chemicals and reagents can be found in a product called SPIROMIDE, made by RPG Life Sciences Ltd. According to the product label, each film-coated tablet contains 20 milligrams of furosemide and 50 milligrams of spironolactone.

Method Development

Chromatographic conditions and mobile phase selection

Chromatographic separation studies employed standard solutions of FRU (400 ng/ band) and SPL (1000 ng/band). Studies were conducted before hand to determine the ideal solvent concentration and plate temperature for HPTLC analysis. Chloroform, methanol, and glacial acetic acid (7.5:2:0.5 v/v/v) proved to be the mobile phase that provided the best resolution and peak characteristics overall. By adjusting the chromatographic parameters (such as the chamber saturation time, run length, distance between tracks, and detection wavelength), we were able to achieve constant Rf values and a symmetrical peak shape for the drug.

The samples were applied to a precoated silica gel aluminum plate 60 F254 with a thickness of 250mm (E. MERCK, Darmstadt, Germany) using a CAMAG Linomat 5 sample applicator and a 100 µL sample syringe (Hamilton, Bonaduz, Switzerland). The width of the bands was 6 mm, and there was an 8 mm gap between each band (Switzerland). The width of the slit was 0.45 mm, and the scanning rate was 20 mm/sec. The mobile phase was used for linear ascending development in a 10 x 10 cm twin trough glass chamber (CAMAG, Muttenz, Switzerland). It took fifteen minutes to completely saturate the compartment with mobile phase. The chromatogram had a development period of about 30 minutes and a run length of 8 cm. An air blast from a hair dryer was used to dry the TLC plates. All developments were scanned for density using a CAMAG thin layer chromatography scanner, with the wavelength set to 234 nm and the software WINCATS 1.4.2 under control. As the radiation source, we opted for deuterium lamps because of their continuous UV spectrum from 200 to 400 nm.

Making a standard stock solution

A 1000 μ g/ml standard stock solution of each medication was prepared by dissolving 10 mg into 10 ml of methanol. Working standard solutions of FRU and SPL, both in methanol at concentrations of 100 μ g/ml, were prepared from their respective standard stock solutions.

Selection of Detection Wavelength

The spectra were collected by scanning stock solution dilutions in methanol from 200 to 400 nm. High absorbance at 234 nm was measured for both medications (Fig. 1).

Tablet Formulation Analysis Sample Preparation

We weighed and powdered ten SPIROMIDE (RPG Life Sciences Ltd) tablets, each of which contained 20 mg of FRU and 50 mg of SPL. A volume of methanol was added to a volumetric flask holding powder corresponding to 10 mg of FRU and 25 mg of SPL, and the volume was adjusted to 10 ml (1000 μ g/ml of FRU and 2500 μ g/ml of SPL). The ultimate concentrations of FRU and SPL were determined by filtering the solution and diluting it further with mobile phase.

Drug system compatibility parameters and chromatogram

Once we got the chromatographic conditions just right, we loaded up a TLC plate with 400 ng/band of FRU and 1000 ng/band of SPL and measured the retention factor as, $FRU = 0.29 \pm 0.03$

Fig. 1. FRU and SPL UV-VIS Spectra (10 μ g/ml) Superimposed

Fig. 2. Densitogram of Mobile Phase blank (Methanol)

Chromatogram of Methanol blank, FRU, SPL and Mixture are shown in Figure 2, 3, 4 and 5 Synopsis of Chosen Chromatographic Parameters

Table 2 summarizes certain chromatographic parameters.

Bulk medication stress degradation studies

The effects of numerous stress degradation processes, such as acid and base hydrolysis, oxidation, dry heat, and photolysis, were investigated. At least three replicates of each sample were made for each experiment.

Fig. 3. FRU density plot

Fig. 4. Densitogram of SPL

The tension was applied to the blank in the same way that it would be applied to the medication. Substances were solidified and then degraded using dry heat and photolysis.

Alkaline hydrolysis

One milliliter of 0.1 N NaOH (methanolic) was mixed with one milliliter of methanol to create a standard working solution of FRU (100 μ g/ml). For 24 hours, the solution was kept in the dark. The final concentration of the SPL solution, prepared in the same manner as the FRU solution, was similarly 250 μ g/ml. After putting 4 μ l of solution to a TLC plate, we found that the concentrations

of FRU were 400 ng/band and SPL was 1000 ng/ band. FRU only had one degradation peak (D1) after being exposed to alkali and it was located at Rf 0.17, with a recovery of 89.14%. SPL 83.52% recovery rate indicated that there was no peak of degradation.

Acidic hydrolysis

An FRU (100 μ g/ml) working standard solution, 0.1 N HCl (methanolic), and 8 ml of methanol were mixed together. For 24 hours, the solution was kept in the dark. The final concentration of the SPL solution, prepared in the same manner as the FRU solution, was similarly

$ean \pm \% RSD$ C 29 ± 0.03 69 ± 0.02	400 1000	Area 3247 5955	Asymmetry 0.99 0.97						
29 ± 0.03 69 ± 0.02	400 1000	3247 5955	0.99 0.97						
69 ± 0.02	1000	5955	0.97						
		-							
Table 2. Characteristics of a chromatograph									
eter	Analytical Conditions								
ary phase	TLC precoated silica g	gel 60 F ₂₅₄ alumin	num plate						
1	Chloroform: Methanol: Glacial acetic acid (7.5: 2:0.5 v/v)								
phase	234 nm								
on Wavelength	234 nm								
		on Wavelength 234 nm	on Wavelength 234 nm						

Fig. 5. Densitometric analysis of a reference mixture containing 400 ng/band FRU and 1000 ng/band SPL

concentrations same manner a

Fig. 6. Densitogram of: I- Alkali blank, II- Alkali treated FRU, III- Alkali treated SPL

Fig. 7. I- Densitogram of Acid blank, II- Acid treated FRU, III- Acid treated SPL

Fig. 8. I- Densitogram of: I) H_2O_2 blank, II) H_2O_2 treated FRUU, III) H_2O_2 treated SPL

 $250 \ \mu g/ml$. After putting 4 μ l of solution to a TLC plate, we found that the concentrations of FRUU were 400 ng/band and SPL was 1000 ng/band.

Recovering 96.84% of its original mass after acid hydrolysis, FRU showed no degradation peak. Nonetheless, SPL was restored to 95.66 percent without any noticeable degradation peaks. **Oxidation**

A 100 μ g/ml FRU working standard solution was combined with a 1 ml 30% H₂O₂

solution. This solution was stored in the dark for a full day. The final SPL solution was also 250 g/ ml, and was made in the same way as the FRU solution. Two-liter quantities were used to apply to the TLC plate, resulting in concentrations of 400 ng/band for FRU and 1000 ng/band for SPL. The oxidative condition resulted in a percent recovery of 86.42% for FRU and no peaks of degradation products, and a recovery of 77.38% for SPL and one peaks of degradation products (D1) at Rf0.81.

Fig. 9. Densitogram of drug after Dry heat degradation: I) FRUU, II) SPL

Deterioration in dry heat

The medication sample was heated to 100° C for two hours during the dry heat test. After two hours, a sample of FRU was taken, dissolved in methanol to make a solution with a $100 \ \mu$ g/ml concentration, spotted in a volume of 4 μ l at a concentration of 400 ng/band on a TLC plate.

The final concentration of the SPL solution, prepared in the same manner as the FRU solution, was similarly 250 μ g/ml. 4 μ l was used to apply to the TLC plate, resulting in concentrations of 1000 ng/band for SPL. FRU was recovered at a rate of 98.94% under dry heat degradation

conditions, whereas SPL was recovered at a rate of 99.10%. No degradation products were detected under these conditions.

Photo-degradation studies

For the photolytic investigations, the medication was first exposed to UV light at a power density of 200 watt hours per square meter, and then to cool fluorescent light at a lumen intensity of 1200 Lux Hrs. Spots of 4 μ l (400 ng/band) of the resultant solution were made on a TLC plate SPL solution, made in the same way as FRU solution, had final concentration of 1000 ng/band for SPL were achieved. The results of the UV and

Fig. 10. Densitogram of drug after photo degradation: I) FRU, II) SPL

fluorescence photo degradation studies showed that FRU recovered 96.19 % of its original mass after being exposed to UV light, whereas SPL recovered 98.21 % of its original mass after being exposed to fluorescence light.

Analytical Method Validation Specificity

Studies of peak purity profiling confirmed the method's sensitivity. As the peak purity values

TROTE ET D'ET TTO UNA OT D'UNAET OTTO TTO TTO DE CONTROLOTION	Table 3. Degradation	of FRU a	and SPL under	Stress: A S	Synopsis
--	----------------------	----------	---------------	-------------	----------

Sr. No.	Deteriorating stress condition	% Recovery (FRU)	Degradation Product (Rf) (FRU)	% Recovery (SPL)	Degradation Product (Rf) (SPL)
1	Base	89.14	D1 (0.17)	83.52	
2	Acid	96.84	_	95.66	_
3	H_2O_2 30% (kept for 24 hrs)	86.42	_	77.38	D1 (0.81)
4	Dry heat (100°C for 2 hrs.)	98.94	_	99.10	
5	Photostability	96.19	D2 (0.04)	98.21	—

```
Table 4. Analysis of FRUU Linearity
```

Replicates		Concen	trations of FRU	(ng/band)						
	200	400	600	800	1000	1200				
Peak Area										
1	1512	3287	4677	6119	7849	9192				
2	1578	3247	4794	6123	7929	9264				
3	1549	3262	4626	6042	7866	9132				
4	1570	3271	4602	6084	7923	9120				
5	1537	3226	4583	6195	7986	9133				
6	1564	3266	4686	6124	7926	9165				
Mean	1551.667	3259.833	4661.333	6114.500	7913.167	9167.667				
Std.dev.	24.402	21.047	76.628	50.694	49.313	54.084				
%RSD	1.573	0.646	1.644	0.829	0.623	0.590				

Fig. 12. Calibration curve for SPL

TADIC 3. SI L'Efficante Analysis	Table 5.	SPL	Linearity Analysis
---	----------	-----	--------------------

Replicate	s		Concentration	s of SPL (ng/ba	nd)				
	500	1000	1500	2000	2500	3000			
			Peak	x Area	ea				
1	3631	6032	8547	10614	12927	14722			
2	3615	5955	8415	10523	12693	14708			
3	3603	5868	8523	10565	12704	14671			
4	3628	5793	8438	10490	12743	14708			
5	3709	5733	8415	10541	12894	14777			
6	3752	5829	8621	10398	12747	14718			
Mean	3656.333	5868.333	8493.167	10521.833	12784.667	14717.333			
Std.dev.	59.872	109.394	84.134	73.586	100.277	34.361			
%RSD	1.637	1.864	0.991	0.699	0.784	0.233			
Table 6. Intra-day precision study FRU									
	Concentration (ng/band)	Concentration Area % Recovery ng/band)			ecovery $\pm \%$ R	SD			
	100	1615	99.439	99	.505±0.693				
		1627	100.224						
		1606	98.850						
	200	3145	99.778	100	0.291 ± 0.775				
		3188	101.185						
		3149	99.909						
	300	4644	99.215	99	$.688 \pm 0.493$				
		4664	99.652						
		4600	100 105						

were higher than 0.997%, it was determined that there was no contamination From other degradation products or pollutants.

Linearity

Using a normal stock standard solutions of 100 μ g/ml FRU and 250 μ g/ml SPL The concentration range used to establish linearity (peak area as a function of concentration) for FRU was 200–1200 ng/band, whereas for SPL it was 500–3000 ng/band. Each concentration has six identical replicates. Table 4 displays the results for FRU, while Table 5 displays the results for SPL. **Range**

FRU = 200 - 1200 ng/band SPL = 500-3000 ng/band

Concentration (ng/band)	Area	% Recovery	Avg % Recovery ± % RSD
100	1638	100.944	100.944 ± 0.454
	1631	100.486	
	1645	101.402	
200	3224	102.363	101.251 ± 0.971
	3167	100.498	
	3179	100.891	
300	4563	97.449	99.492 ± 1.846
	4726	101.004	
	4681	100.022	

Table 7. Inter-day precision of FRU

Table 8. SPL for an intraday precision study

Conc. (ng/band)	Area	% Recovery	Avg % Recovery ± % RSD	
1600	3771	100.381	101.083 ±0.649	
	3789	101.188		
	3800	101.681		
3200	5993	100.000	100.590 ±0.614	
	6017	100.538		
	6048	101.233		
4800	8310	101.293	100.765 ± 0.469	
	8265	100.620		
	8249	100.381		

Table 9. Inter-day SPL investigation of precision

Concentration (ng/band)	Area	% Recovery	Avg % Recovery ± % RSDa	
 1600	3741	99.036	99.813 ±0.764	
	3759	99.843		
	3775	100.560		
3200	5945	98.924	99.694 ±0.911	
	5969	99.462		
	6024	100.695		
4800	8244	100.306	99.729 ±0.538	
	8199	99.634		
	8173	99.245		

Precision

Intra- and inter-day variance analyses proved the reliability of the technique. Intra-day research involved analyzing three replicates of three different concentrations on a single day, with the % RSD being determined. Three separate concentrations were examined over the course of three days for the inter-day variation investigations, and the % RSD was determined. Tables 6, 7, 8, and 9^{13, 14} display the results obtained for intraday and interday variations.

Assay

The analysis of the tablet formulation was performed as described in Tablet Formulation Analysis. Six times through the procedure. Each medicine had a sample solution sprayed on it, and the resulting area was measured. A linear equation was used to figure out the concentration and the purity percentage. The outcomes are detailed in Table 10. The chromatogram in Figure 13^{15, 16} is typical of the type of chromatogram used in sample analysis.

Sr. No.	Peak area	FRU Amt. recovered (ng/band)	% recovery	Peak area	SPL Amt. recovered (ng/band)	% recovery
1	3175	403.040	100.760	5976	996.189	99.619
2	3162	401.339	100.335	6018	1005.604	100.560
3	3198	406.050	101.513	5944	989.016	98.902
4	3156	400.554	100.138	5946	989.464	98.946
5	3183	404.087	101.022	6022.5	1006.613	100.661
6	3155	400.423	100.106	5973	995.517	99.552
Mean	3171.50	402.582	100.646	5979.92	997.067	99.707
SD	17.03	2.228	0.557	33.96	7.613	0.761
% RSD	0.537	0.554	0.554	0.568	0.764	0.764

Table 10. Assay results of tablet formulation

Fig. 13. Test Solution FRU (400 ng/band) and SPL (1000 ng/band) Densitogram

Accuracy

Recovery trials were performed by adding 50, 100, and 150% of a standard medication to a sample to verify the method's accuracy. Four microliters of 100 μ g/ml FRU and of 250 μ g/ml SPL were used as the basic sample concentrations. Three replicate applications of these solutions were performed to TLC plates to generate the densitogram. Using linearity equations for FRU and SPL, we were able to determine their respective medication concentrations. Table 11 and Table 12 illustrate the acquired results.

Limit of Detection (LOD)

The formula used to determine LOD: -LOD = $3.3 * \sigma/s$

Where,

LOD of SPL = 46.78 ng/band

				5						
Le	evel	Conc. (ng	Area	,	%	Mean %				
		Sample	Std.	Recove	ery	Recovery $\pm \%$	RSD			
50)%	400	200	4646		99.259	9	9.230 ± 0.7	04	
				4676		99.913				
				4612		98.517				
10	00 %	400	400	6235		100.439	9	9.757 ± 0.62	21	
				6161		99.228				
				6184		99.605				
15	50 %	400	600	7742		100.074	9	9.943 ± 0.6	52	
				7776		100.519				
				7678		99.236				
Table 12. SPL recovery studies										
	Level	Conc (ng	/band)	Area	% F	Recoverv	Mean % R	$ecoverv \pm S$	D	
		Sample	Std.		,					
	50 %	1000	500	8249	1	00.381	100.03	7 ± 0.406		
				8196	9	9.589				
				8233	1	00.142				
	100 %	1000	1000	10471	1	00.191	100.58	5 ± 0.444		
				10498	1	00.493				
				10550	1	01.070				
	150 %	1000	1500	12691	1	00.058	99.95	8 ± 0.565		
				12737	1	00.466				
				12612	9	99.350				
Table 13. Robustness Analysis										
Drug			% RS	D Found for Ro	bust	ness Study				
-	,	Wavelength (ni	n)	Saturati	on P	eriod of	Time	e form applic	cation	
				a Char	nber	(Min)	to de	evelopment ((min)	
	233	234	235	14	15	16	25	30	35	
FRU	0.727	0.560	0.881	1.083 (0.704	0.808	1.220	1.224	1.348	
SPL	0.783	1.563	0.801	0.301 (0.655	0.967	1.047	0.631	0.677	

Table 11. Recovery st	udies of FRU
-----------------------	--------------

717

Sr	Sr.	Metric for	Results	
	No.	Validation	FRU	SPL
	1.	Linearity	y = 7.641 x + 95.37 $R^2 = 0.9984$	y = 4.461 x + 1532 $R^2 = 0.9982$
	2.	Range	200-1200 ng/band	500 - 3000 ng/band
	3.	Assay (Mean \pm % RSD)	100.646 ± 0.554	99.707 ± 0.764
	4.	Precision	%RSD	%RSD
		A) Intraday precision	0.493 - 0.775 %	0.469 - 0.649%
		B) Interday precision	0.454 - 1.846 %	0.538 - 0.911 %
	5.	Accuracy	% recovery	% recovery
		50%	99.230 ± 0.704	100.037 ± 0.406
		100%	99.757 ± 0.621	100.585 ± 0.444
		150%	99.943 ± 0.652	99.958 ± 0.565
	6.	LOD	9.28 ng/ band	46.78 ng/band
	7.	LOQ	28.13 ng/band	141.75 ng/band
	8.	Specificity	Specific	Specific
	9.	Robustness	Robust	Robust

Table 14. Overview of the validation study

Limit of Quantification (LOQ)

In order to express the Quantitative bound,

we have: $LOO = 10 * \sigma/s$

LOQ of FRU = 28.13 ng/ band LOQ of SPL = 141.75 ng/band

Robustness

To ensure the reliability of the procedure, multiple trials were conducted using a range of parameters, including wavelength, chamber saturation time, and Time form application to development. Table 13 displays the final findings. **Overview of the validation study**

Method was validated as per ICH guideline^{20, 21, 22}

Table provides a summary of the validation parameters.

DISCUSSION

The findings of these research led to the development of solvent-free HPTLC methods for determining FRU and SPL. As a result of the fact that the suggested HPTLC method simultaneously determined the target compounds while utilizing minute amounts of solvents, it stood out as an

analytical tool for quality control laboratories that was both quick and inexpensive. One of the primary contributors to the overall decrease in cost per analysis is the capacity of HPTLC technology to rapidly analyze a number of samples while requiring only a small volume of solvent. Following the completion of pharmacokinetic research, the established procedures will be put to use in order to successfully isolate and measure the components that were under investigation in human samples. This will be accomplished without the interference of confusing biological constituents. Statistical significance tests were used to validate the procedures that were devised for the simultaneous determination of the pure and mixed drug forms that were under consideration. These processes were verified for selectivity, accuracy, and repeatability^{17, 18}.

During the chromatographic separation investigations, standard solutions of FRU (200 ng/ band) and SPL (3200 ng/band) were utilized. In the past, research was conducted to determine the ideal solvent content as well as the plate temperature for HPTLC analysis. In general, the best peak characteristics and resolution were achieved by using a mobile phase that was composed of chloroform, methanol, and glacial acetic acid in the proportions of 7.5:2:0.5 volume/volume. By adjusting the chromatographic parameters (such as the chamber saturation time, run length, distance between tracks, and detection wavelength), we were able to keep the Rf values constant and produce a medicine with a symmetrical peak shape. A standard stock solution with a concentration of 1000 µg/ml was prepared by dissolving 10 mg of each medication into 10 ml of methanol. Standard stock solutions of FRU and SPL were used to generate working standard solutions of those chemicals at concentrations of 100 µg/ ml FRU and 250 µg/ml SPL in methanol. These solutions were used to measure the concentration of the substances. In order to produce the spectra, stock solution dilutions in methanol were scanned between the wavelengths of 200 and 400 nm. It was discovered that both medicines possessed a high absorption when measured at 234 nm^{19, 20}.

719

Ideal conditions were used for the preparation of the TLC plates, and a volume of 4 μ l was utilized for the application^{21, 22}.

Research was conducted on a number of different kinds of deterioration that can occur as a result of stress. These included acid and basic hydrolysis, oxidation, dry heat, and photolysis. At a minimum of three copies of each sample were used in each experiment. The strain was applied to the blank in a manner that was analogous to how one may apply medication. Solid compound was subjected to dry heat condition and then photolyzing them. During the process of validating, each and every validation parameter was utilized²³, ²⁴, ²⁵.

CONCLUSION

These studies paved the way for the development of solvent-Free HPTLC methods for the simultaneous determination of FRU and SPL. As an analytical strategy for quality control laboratories, the proposed HPTLC method stood out for its speed and low cost due to its simultaneous determination of the target chemicals utilizing tiny amounts of solvents. The ability of the HPTLC technology to rapidly analyze several samples with a minimal amount of solvent adds directly to the decreased cost per analysis. The established methods effectively separated and measured the examined components in human samples devoid of confounding biological components, paving the path for their application in subsequent pharmacokinetic studies. The selectivity, accuracy, and repeatability of the devised processes for the simultaneous determination of the pure and mixed drug forms tested were validated by statistical significance analyses.

ACKNOWLEDGEMENTS

The authors are thankful to Dr. V.R. Patil sir, Principal of Hon. Loksevak Madukarrao Chaudhari College of Pharmacy, Faizpur, Jalgaon for his valuable support and guidance. The authors are also thankful to JSPM'S Rajarshi Shahu College of Pharmacy and Research for providing laboratory and instrumental facility.

Conflict of interest

The authors declared that there is no conflict of interest.

Funding source

No specific grant was received from any funding agency.

REFERENCES

- Karunakaran A, Sudharsan SI, Jayaprakash R, Vekatachalam S, Raju SK, Elampulakkadu A. Analytical method development and validation for the estimation of Furosemide an anti-diuretic in Furosemide injection diluted with normal saline in presence of impurities by RP-HPLC. Brazilian Journal of Biological Sciences. 2021 Apr 30;8(18):35-56.
- Wenk M, Haegeli L, Brunner H, Krähenbühl S. Determination of furosemide in plasma and urine using monolithic silica rod liquid chromatography. Journal of pharmaceutical and biomedical analysis. 2006 Jun 16;41(4):1367-70.
- Ahire ED, Sonawane VN, Surana KR. Role of drug repurposing in current treatment strategies against COVID-19; systemic review. Pharm Reson. 2020:24-9.
- 4. Abdel-Hamid ME. High-performance liquid chromatography-mass spectrometric analysis of furosemide in plasma and its use in pharmacokinetic studies. Il Farmaco. 2000 Jul 1;55(6-7):448-54.
- Wolf-Coporda A, Lovriæ Z, Huiæ M, Francetiæ I, Vrhovac B, Plavsiæ F, Skreblin M. Determination of bioequivalence of two furosemide preparations; the effect of high doses of furosemide on some pharmacokinetic parameters. International journal of clinical pharmacology research. 1996 Jan 1;16(4-5):83-8.

- 6. Mangal G, Dhobale S. Development of UV spectrophotometric methods and validation for estimation of furosemide in bulk and tablet dosage form by absorbance maxima and area under the curve method. Int J Adv Pharma. 2016;5:160-70.
- Ahire ED, Sonawane VN, Surana KR, Talele GS. Drug discovery, drug-likeness screening, and bioavailability: development of druglikeness rule for natural products. InApplied pharmaceutical practice and nutraceuticals 2021 Apr 14 (pp. 191-208). Apple Academic Press.
- Kaynak MS, Sahin S. Development and validation of a RP-HPLC method for determination of solubility of furosemide. Turk J Pharm Sci. 2013 Jan 1;10(1):25-34.
- 9. Youm I, Youan BB. Validated reverse-phase high-performance liquid chromatography for quantification of furosemide in tablets and nanoparticles. Journal of Analytical Methods in Chemistry. 2013 Jan 1;2013.
- Walash MI, El-Enany N, Eid MI, Fathy ME. Micellar high performance liquid chromatographic determination of furosemide and spironolactone in combined dosage forms. Application to human plasma. J Pharm Res. 2012 May;5(5):2648-56.
- McNamara PJ, Foster TS, Digenis GA, Patel RB, Craig WA, Welling PG, Rapaka RS, Prasad VK, Shah VP. Influence of tablet dissolution on furosemide bioavailability: a bioequivalence study. Pharmaceutical research. 1987 Apr;4:150-3.
- Ghanekar AG, Gibbs Jr CW. Stability of furosemide in aqueous systems. Journal of pharmaceutical sciences. 1978 Jun 1;67(6):808-11.
- Molz KH, Pabst G, Dilger C, Weber W, Renner P, Jaeger H. Multiple peaks and low bioavailability of furosemide correlate with the volume of fluid ingested. European Journal of Drug Metabolism and Pharmacokinetics. 1991 Jan 1:194-200.
- Kodati D, Yellu N. Population pharmacokinetic modeling of furosemide in patients with hypertension and fluid overload conditions. Pharmacological Reports. 2017 Jun 1;69(3):492-6.
- Nava-Ocampo AA, Velázquez-Armenta EY, Reyes-Pérez H, Ramirez-Lopez E, Ponce-Monter H. Simplified method to quantify furosemide in urine by high-performance liquid

chromatography and ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications. 1999 Jun 25;730(1):49-54.

- Bosch ME, Sánchez AR, Rojas FS, Ojeda CB. Analytical determination of furosemide: the last researches. Int J Pharm Biol Sci. 2013;3(4):168-81.
- Barbosa PA, Rozário RB, Souza TP, Santos KS. Pharmaceutical evaluation of compounded furosemide capsules and excipient performance. Brazilian Journal of Pharmaceutical Sciences. 2022 Nov 25;58.
- Kaojarern SM, Poobrasert O, Utiswannakul A, Kositchaiwat UN. Bioavailability and pharmacokinetics of furosemide marketed in Thailand. Journal of the Medical Association of Thailand= Chotmaihet Thangphaet. 1990 Apr 1;73(4):191-7.
- Alfred-Ugbenbo D, Zdoryk OA, Georgiyants VA. Validation of analytical method for determination of furosemide in extemporaneous syrup. Medical and Clinical Chemistry. 2017(2):5-11.
- Miranda JA, Garnero C, Zoppi A, Sterren V, Ayala AP, Longhi MR. Characterization of systems with amino-acids and oligosaccharides as modifiers of biopharmaceutical properties of furosemide. Journal of Pharmaceutical and Biomedical Analysis. 2018 Feb 5;149:143-50.
- Aher P, Surana K, Ahire E, Patil D, Sonawane D, Mahajan S. Development and Validation of RP-HPLC Method for Quantitative Determination of 4-Amino Benzene Sulphonamide in Sulphonamide Hydrochloride. Trends in Sciences. 2023 Mar 15;20(6):5209-.
- 22. Abou-Auda HS, Al-Yamani MJ, Morad AM, Bawazir SA, Khan SZ, Al-Khamis KI. High-performance liquid chromatographic determination of furosemide in plasma and urine and its use in bioavailability studies. Journal of Chromatography B: Biomedical Sciences and Applications. 1998 Jun 12;710(1-2):121-8.
- 23. ICH, Q2 (R1), Validation of analytical procedure: Text and Methodology. International Conference on Harmonization 2005.
- 24. ICH, Q1A (R2), Stability Testing of New Drug Substances and Products. International Conference on Harmonization 2003.
- 25. ICH, Q1B, Photo stability Testing of New Active Substances and Medicinal Products. International Conference on Harmonization 1988.