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	 Refractive laser surgery is all about the accuracy, whether screening or surgery, 
given the age and profile of the patient enduring these trials, there is no margin for error. Most 
of them are for aesthetic reasons, contact lens intolerance, or professional reasons, including 
athletes. In this article, the role of artificial intelligence and deep learning in laser eye surgeries 
has been introduced. The presence of lingering laser spots on the retina after refractive laser 
surgery in diabetic retinopathy poses a potential risk to visual integrity and ocular well-being. 
The hypothesis for the research paper is that the hybridized convolutional neural network 
models, including LeNet-1, AlexNet, VGG16, PolyNet, Inception V2, and Inception-ResNetV2, will 
yield varying levels of performance in classifying and segmenting laser spots in the retina after 
diabetic retinopathy surgery. The hypothesis predicts that Inception-ResNetV2 will demonstrate 
superior results compared to the other CNN versions. The research aims to provide a novel 
approach for laser therapies and treatments, facilitating the rapid classification, highlighting, 
and segmentation of laser marks on the retina for prompt medical precautions.  The comparative 
analysis revealed that Inception-ResNetV2 exhibited exceptional performance in both training 
and validation, achieving the highest accuracy (96.54%) for classifying diabetic retinopathy 
images. Notably, VGG16 also demonstrated strong performance with a validation accuracy of 
94%. Conversely, LeNet-1, AlexNet, PolyNet, and Inception V2 displayed comparatively lower 
accuracy rates, suggesting their architectures may be less optimized for this particular image 
classification task. This achievement holds immense promise for timely detection, precise 
localization, and optimal management of laser spots, fostering enhanced visual outcomes and 
elevating the standards of patient care in this context.

Keywords: Biomedical image processing; Convolutional Neural Networks(CNN); 
Classification algorithms; Diabetic Retinopathy; Feature extraction; Laser Mark.

	 Artificial Intelligence(AI) which is based 
on Soft Computing(SC), Machine Learning(ML), 
and Deep Learning(DL), is becoming more and 
more well-liked and accepted in the fields of 
medicine and healthcare1 due to its ability to 
outperform people, notably in the recognition and 

interpretation of images. These algorithms’ findings 
can be used to accurately screen for Corneal 
Ectasias before refractive surgery and identify 
people for whom the treatment is inappropriate. 
The performance of the current algorithms is 
comparable to that of an experienced surgeon 
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in terms of safety, efficacy, and predictability. 
Two more possible uses for AI are predicting 
the outcomes of laser refractive surgery and 
increasing the accuracy of SMILE (small incision 
lenticular extraction),   outcomes. SMILE is 
also known as LASIK (laser-assisted-epithelial-
keratomileusis)2,3 and is a minimally invasive, flap-
free refractive surgery that uses a femtosecond laser 
and is becoming increasingly popular as a secure 
substitute for flap-based procedures4. Diabetic 
retinopathy is the most prevalent and dangerous 
vision-related side effect of diabetes mellitus. Its 
progression can be slowed down in its advanced 
stages by employing laser photocoagulation 
therapies, which inhibit the neovascularization 
processes typical of diabetic retinopathies. These 
therapies alleviate retinal hypoxia by destroying 
retinal tissue. Currently, automated algorithms are 
used by screening software to identify people with 
diabetic retinopathy 5. Unfortunately, these methods 
might not work correctly if the patients being tested 
have previously undergone laser photocoagulation 
treatments 6. This work proposes a digital retinal 
fundus image classifier that determines whether the 
input image has signs of prior photocoagulation 
laser treatments, which are signs of laser scars, by 
analyzing characteristics calculated from candidate 
regions selected from the input image.
	 Blindness can result from eye conditions 
like diabetic retinopathy. Laser therapy can halt 
the further evolution of diabetic retinopathy in 
its advanced stages. The surface of the retina 
is damaged by laser treatment, which results 
in improper responses from automated retinal 
diagnostic systems. It is desirable to identify laser 
marks and eliminate them in order to prevent any 
needless processing because these laser marks 
obstruct further analysis of the retinal pictures. 
The method for automatically detecting laser 
marks from retinal images is presented in this 
study, along with some performance evaluation-
based results7. With laser photocoagulation, 
which creates scars on the retina, it is possible 
to slow the disease’s progression in its advanced 
stages. Automatic diagnostic algorithms are used 
by modern screening programs to find diabetic 
retinopathy (DR) in patients. When the patient’s 
retina has scars from past laser photocoagulation 
treatments, these systems’ performance may be 
compromised. It is preferable to identify and 

exclude these patients from the screening program 
because they are already receiving treatment. The 
results on the performance of a proposed technique 
that uses tree-based classifiers to automatically 
detect the occurrence of the laser markings in the 
retinal images are acquired and reported8. In the 
retinal tissue, photocoagulation treatments for 
diabetic retinopathy cause scars. These signs must 
be identified in order to avoid screening patients 
who have already received treatment and to modify 
subsequent image-processing operations carried 
out in the framework of automatic diagnosis. One 
of the most advanced optical imaging methods for 
looking through biological tissue is near-infrared 
diffuse optical tomography (DOT), which enables 
3-D quantitative imaging of optical characteristics, 
including functional and anatomical data. With 
DOT, it should be possible to get around the 
drawbacks of standard near-infrared spectroscopy 
(NIRS) while also presenting the possibility of 
diagnostic optical imaging. The field of optical 
tomography9, which is relatively new and employs 
ultra-short laser pulses to identify anomalies 
within the body rather than potentially hazardous 
ionizing radiation as other techniques do, may have 
made the most impressive advancements. Unlike 
x-rays, which travel through tissue in straight 
lines, photons adopt zigzag courses instead, hence, 
optical tomography entails the challenging process 
of reconstructing an image from highly scattered 
photons.
	 Precision measurement of the number of 
photons entering in each direction and their arrival 
time is used to accomplish this. A speckle pattern, 
also referred to as a random interference effect, 
is created when the laser light impacts a diffuse 
object. The strength of the speckles varies when the 
thing is moving. These variations may reveal details 
about the movement. Laser speckle10 flowmetry is 
a second form of laser imaging technology that 
is beginning to be employed in clinical settings. 
It is used to track changes in blood flow within 
tissues. The amount of time the fluorophor spends 
in the excited state before going back to the ground 
state is known as the fluorescence lifespan. It is 
a feature of all dyes and their surroundings. The 
autofluorescence may be distinctive to a particular 
tissue and used for tumor detection. Since these 
uses are more common in tissues or organisms, 
Two-Photexcitationion (TPE) and Non-Descanned 



549Das et al., Biosci., Biotech. Res. Asia,  Vol. 20(2), 547-559 (2023)

detection (NDD) are frequently combined for deep 
tissue imaging. The advancement of all-solid-state 
systems, which make high-performance lasers 
accessible to smaller research institutions, has been 
a significant trend in recent years. Fluorescence 
lifetime imaging (FLIM)11 is one instance of this. 
In this method, fluorescence signals in biological 
tissues are excited using brief laser pulses in the 
femtosecond to picosecond range. Due to their 
low level of intrusion and efficient ability to 
transfer biological material to and from cells and 
tissues, nanoneedles have developed into the ideal 
platforms for topical biosensing and medication 
delivery. Because it combines mechanical strength 
with bioresorbability and has the potential for either 
continuous drug release or effective biomolecule 
harvesting due to the mesoporous structure, porous 
silicon is a promising material for the production 
of micro- and nanoneedles12. 
	 In the West, proliferative diabetic 
retinopathy is a serious, disabling condition that 
accounts for most occurrences of blindness in 
people13. Proliferative diabetic retinopathy is 
treated using photocoagulation, although the 
molecular processes through which it works are still 
unknown. Angiostatin is known to be a powerful 
neovascularization inhibitor, as suggested14. The 
pathologic alterations in the neurosensory retina 
are described in depth by The Scientist, utilizing 
particular immunocytochemical markers. The 
clinical development of the illness process is 
connected with these alterations. The release of 
angiostatin could start the anti-angiogenic effects 
of retinal photocoagulation, together with a 
potential down-regulation of angiogenic cytokines. 
Within the first two decades of life, the fundus 
flavimaculatus (Stargardt illness) group of inherited 
macular dystrophies frequently causes a decline in 
central vision15,16. 
	 According to the criteria set forth in 
several randomized trials, fundus perimetry with 
the potential for fixation point detection and the 
stability of fixation would not alter the indication 
for laser treatment. To assess the clinical utility of 
knowing the area of fixation before and after laser 
treatment, more research and a longer follow-up 
are necessary17,18. This new technique might make 
it easier to assess the effectiveness of the treatment 
and predict the aesthetic result with greater 
accuracy19. An illness that frequently threatens 

vision is diabetic retinopathy (DR). Panretinal 
photocoagulation, a procedure used to treat 
individuals with severe DR, leaves behind scars 
called laser marks. In this study, researchers created 
a deep learning system based on the portable U-Net 
to separate laser marks from the colored fundus 
images, which could help signal a stage or provide 
helpful supplemental information for the treatment 
of DR patients. The small-footprint U-Net approach 
demonstrated consistent performance in accurately 
segmenting laser markings in fundus pictures with 
high numeric metrics, which could aid the AI in 
supporting the diagnosis of DR at the severe stage20.
	 Retinal fundus disorders can result in 
irreversible vision loss if they are not promptly 
diagnosed and treated. For the diagnosis of 
glaucoma, age-related macular degeneration, 
and diabetic retinopathy, separate disease-based 
deep-learning algorithms have been built. In this 
study, we created a deep learning platform (DLP) 
that can recognize a variety of common referable 
fundus disorders. The detection of numerous retinal 
disorders and ailments was also highly effective in 
external multihospital tests, public data tests, and 
tell reading applications. These findings suggest that 
our DLP can be used, particularly in distant parts of 
the world, for retinal fundus disease triage21. The 
ability to directly observe vascular morphology, 
which is connected to numerous clinical disorders, 
is made possible by the retinal vasculature. 
However, accurate vessel segmentation, which is 
time- and labor-intensive, is required for objective 
and quantitative interpretation of the retinal 
vasculature. The segmentation of retinal vessels has 
shown considerable potential when using artificial 
intelligence (AI). Numerous retinal images with 
annotations are necessary for the creation and 
assessment of AI-based models22. The findings of 
this literature review suggest straightforward and 
efficient techniques for finding these laser marks.

METHODOLOGY

	 One method of eyesight correction is 
LASIK. The top layer of the cornea is lifted, the 
inner layers of the cornea are reshaped with a 
laser, and the flap is then replaced, allowing the 
eyes to heal rapidly and precisely. AI(Artificial 
Intelligence) is utilized to assure the accuracy 
and predictability of outcomes with each type 
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of surgery, in addition to screening for refractive 
surgery. Numerous patient-specific criteria, 
including age, prescription, corneal, and other 
eye features, as well as environmental elements, 
including the operation suite’s temperature and 
humidity, are integrated into a rigorous software 
engine. Such integration enables AI to produce 
formulas that direct the treatment plan23.
	 The most common and well-known 
kind of treatment for proliferative retinopathy 
and diabetic macular edema, both severe phases 
of diabetic retinopathy, is photocoagulation. Due 
to the laser’s incidence, this type of treatment 
produces scarring on the retina. We’ll refer to 
these marks as laser scars. DR screening systems 
currently use automatic diagnostic algorithms to 
find lesions connected to DR. Laser markings 
should be detected because they could impair the 
functionality of these systems. A database called the 
Laser Mark Dataset (LMD) allows for comparative 
research on the segmentation of the laser marks in 
the retinal pictures. The scientific community is 
encouraged to use this database to evaluate their 
laser mark detection techniques.
Description of data
	 The fundus photos with laser marks in this 
dataset were created from RGB images in a JPG 
or JPEG format that was downloaded from Kaggle 
The clinical section of the Zhongshan Ophthalmic 
Center, the Lifeline Express charity project in 
China’s DR screening program, or open internet 
data were used to collect the fundus photographs. 
A set of 154 laser-marked fundus shots was divided 
into two subsets: one contained the remaining 70 
images, while the other contained the 84 images 
that had been manually segmented by the Image 
Reading Center’s professional graders just once. 
The 70 pictures in the second dataset have to 
have all of the assured laser marks labeled by the 
three experienced graders. At least two graders 
tagged the image standards that served as the 
gold standard. The formal data set was built using 
this sub-data-set since it contained more accurate 
manual segmentations. The formal training dataset, 
consisting of 50 photos, and the testing dataset, 
consisting of 20 images, were created from the 70 
fundus shots with gold standards24.
Image Preprocessing and Augmentation 
	 Due to the range of camera devices used, 
the fundus photographs in the image data differed 

in size, resolution, and color, making it necessary 
to preprocess the images in order to artificially 
summarize the commonality. Differences in 
intrinsic feature distributions were lessened with 
the use of preprocessing. All photos were first scaled 
down to 512x512 pixels. On each channel, the 
three processes below were consecutively applied 
in order to remove the overall tone brightness 
variance between images. After calculating the 
Z-score standardization, which produced an image 
with a mean of 0 and a variance of 1, the inner 
image minimum-maximum normalization was 
performed with the aim of converting the grayscale 
values to a scale from 0 to 255.
Image Enhancement 
	 Digital images are modified during the 
process of image enhancement to provide outcomes 
that are better suited for display or additional 
image analysis. The original range of grey levels 
is widened by the linear transformation, resulting 
in contrast augmentation or stretching as shown in 
figure 2. 
	 Spatial filtering enhances the naturally 
occurring linear characteristics, such as faults, 
shear zones, and lineaments. Through a process 
called density slicing, distinct features are 
represented by a sequence of density intervals, each 
of which is denoted by a different color or symbol.
Model Evaluation by CNN Architecture
	 The architecture of the trainable multi-
stages made of various stages can be used to define 
this type of neural network. Each stage’s inputs 
and outputs are sets of arrays known as feature 
maps. Each feature map for the outputs represents a 
distinct feature that was taken from every place on 
the input. Three layers make up each stage; a filter 
bank, a nonlinearity layer, and a layer of pooling 
feature. Three layers or fewer are required for a 
classic (CNN). The modules for classification come 
after these first three tiers. The image recognition 
case’s several layers are described as follows.
Image Input Layer 
	 The image input layer establishes the size 
of any supplied images in the CNN. Additionally, 
it includes the raw pixel values for the image. The 
image size is determined by the input image’s 
width, height, and number of color channels. For 
example, there is only one channel for grayscale 
photos and three for color images. The mean or 
median of the images in the training dataset is 
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subtracted from each input image by the input layer 
in order to normalize the data.
Convolutional Layer 
	 The neurons in this layer are related to 
various areas of the input or output pictures from 
the layer below. While scanning over the photos, 
this layer can pick up on any feature that is localized 
using these regions. A variety of weight sets that 
may be applied to a specific part of the image were 
employed in this layer. The input image could be 
moved vertically and horizontally along the entire 
filter. For each area, the inputs are convolved again 
in this phase using the same method. This step’s 
length and its movements are called a stride. These 
local regions to which the associated neurons 
have connections may overlap depending on the 
filter-Size and the value of the stride. The weight 
number used in the filter is w*h*c. Where c is the 
channel number in the input image and w and h 
are the sizes of each filter, respectively. In this 
case, the example channel for color photos is 3. 
The channel number for the convolutional layer 
output can be determined by the filter number. The 
comparable weight set and convolution are used, 
as was previously discussed, to create the feature 
map as the filters traverse through the input images. 
As a result, the number of channels in the feature 
maps for this layer is the same. Every feature map 
has a unique collection of biases and weights. 
Consequently, the convolutional layer’s total 
parameter count is ((w*h* c + 1)* Filters Number). 
Padding should also be mentioned in this layer. In 
essence, it is tallied by bordering the input image 
with zero columns or rows. Controlling the output 
size of the layer can be beneficial. The output of 
the layer’s width and height can then be calculated 
using the formula in Equation 1.

(Input Size - Filter Size + 2*Padding)/Stride + 1	
...(1)

Batch Normalization Layer
	 These layers can be used in conjunction 
with convolutional and ReLU layers to quicken 
network training and reduce the sensitivity of 
network initialization. The layer normalizes the 
activation of each channel by subtracting the mini-
batch average and dividing the result by the mini-
batch standard deviation. The layer then executes 
shifting using an offset after scaling the input 
using a scale factor. These variables are thought 

of as trainable parameters that can be changed. In 
a neural network, this layer normalizes gradient 
activations and their propagation. This is done to 
help with the network training’s optimization issue. 
This layer can be used to increase the learning rate 
to the fullest extent.
Rectified Linear Unit (ReLU) Layer 
	 A nonlinear activation function, in this 
case, a (ReLU) layer, specifically a “rectified linear 
unit” layer, is typically followed by convolutional 
and batch normalization layers. Using this layer, 
every element is exposed to threshold operations, 
and every negative input value is equalized to zero, 
as in equation 2.

	 f(x) = max(0,x)	 ...(2)

Max Pooling Layers 
	 These layers are placed after any 
convolutional layer for downsampling. It is 
employed to reduce the number of connections to 
the following levels. These layers don’t function 
for self-learning purposes. Lowering the number 
of parameters to be learned can reduce over-fitting 
in the subsequent layers. The max pooling layers 
return the greatest values for the rectangular 
region of the layer. The rectangle size region can 
be determined using the input for the max pooling 
layer pool size. For instance, the layer will return 
the greatest value in the sections of height 3 and 
width 2 if Pool Size is equal to (3,2).
Dropout Layers 
	 These layers randomly and with a 
predetermined probability change the input 
elements of the layer to zeros. This procedure 
equates to arbitrarily removing the unit and all of 
its network connections during the training period, 
despite the fact that this layer’s output and input 
are identical. In this scenario, train the network 
in a random manner to choose a neural subset to 
create a distinct layer architecture for each new 
element input. Architectures with layers share 
weights However, the layer of dropout may aid in 
preventing overfitting since the learning process is 
not dependent on particular neuron and connection 
types.
Fully Connected Layer 
	 A single, fully connected layer or a 
number of layers may make up these layers. After 
the convolutional layer, these layers are displayed. 
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The neurons in the preceding layer are all connected 
to the neurons in this layer. The completely linked 
layer combines all learned features from earlier 
layers. Larger patterns were found using these 
features, which were then used to classify the 
photos according to several categorization issues. 
The dataset’s class numbers are output by the final 
fully connected layer as size arguments. The output 
size for regression issues must match the number 
of response variables.
Output Layers 
	 Classification tasks are performed using 
the Soft Max and Classification Layers. Following 
the previous fully connected layer are these 
two layers. The softmax function is used in this 
instance to activate the output unit represented in  
equation 3.

                                                       ...(3)

 softmax,  input vector, 

 input vector, k= number of classes and 
 output vector

	 This function displays the output unit 
activation function following the final completely 
linked layer for problems with multiclass 
classification:

                                                 	
...(4)

	 The normalized exponential is another 
name for the softmax function represented in 
equation 4. Additionally, the logistic sigmoid 
multiclass generalization of function is being 
considered. This work employs the CNN variations 
Inception-ResNetV2, LeNet-1, AlexNet, VGG16, 
PolyNet, and Inception V2 to figure out the best 
model among them. 

RESULT AND DISCUSSION

	 For the classification purpose of laser 
marks containing fundus images, the different 
CNN architectures with the previously discussed 
layers and transfer functions have been used. 
For classification purposes, a hybrid customized 
system using Residualnet 50 and Inception v2 

Fig. 1. A retinal picture with laser markings (on the left) and one without (on the right)24

Fig. 2. Retinal image enhancement process
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Fig. 3. Hybrid Inception-resnet-v2

has been utilized. Inception-ResNet-v2 is a CNN 
architecture that builds on the Inception family of 
architectures and integrates residual connections. 
For the residual versions of the Inception networks, 
we use Inception blocks that are less expensive than 
those in the novel Inception. The inception block 
is followed by the filter-expansion layer, which 
is used to make the filter bank more dimensional 
before being added to match the depth of the input. 
This is essential to make up for the dimensionality 
loss brought on by the Inception block, as depicted 
in Figure 3.
	 For the segmentation process with 
mapping the masks of the segmented area of laser 
spots in fundus images, the residual U net is used. 
The ResNet design serves as the foundation for 
this U-net variation. ResNet was developed with 

the goal of overcoming the challenges associated 
with training extremely deep neural networks, as 
depicted in Figure 4. It is well recognized that the 
more layers present in a neural network, the faster 
it can converge on a solution. The findings of the 
experiments revealed that adding more layers 
causes saturation, and adding more layers can 
result in performance reduction. This deterioration 
is brought on by the weight vector’s decreasing 
gradients, which in deeper neural networks result 
in the loss of feature identities. By using skip 
connections, which add the feature map from 
one layer to another layer deeper in the network, 
ResNet decreases this issue. A skip connection 
in the residual U-net adds the input from the first 
convolutional layer to the output from the second 
convolutional layer at every block in the network. 
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Fig. 4. Fully Residual U net architecture 25

Fig. 5. The training and validation accuracy of Inception-ResNetV2 98.82% and 96.54% respectively.

Prior to any down- or up-sampling, the U-net’s 
respective routes employ this skip connection. The 
vanishing gradient problem is addressed by using 
residual skip connections to build U-net models 
with deeper neural networks. 
	 Prior to adopting the recommended 
dataset, and conducted a five-fold cross-validation 
to verify the likelihood of the training dataset and 
testing dataset selection. The 70 highly labeled 

photos were divided into five folds, each of which 
had 14 pictures. One of the five folds was chosen 
to act as the testing dataset and the other four as 
the training dataset in the ensuing justification 
experiment. The greatest AUC value was 0.9833, 
and the lowest was 0.9706. Given that the range 
produced by these two intense AUC values covered 
0.9798, it is obvious that the initial separation of the 
training and testing dataset was largely arbitrary.
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Fig. 6. The training and validation accuracy of LeNet-1 95.05% and 65.77% respectively

Fig. 7. The training and validation accuracy of AlexNet 98.78% and 80.37% respectively

Training and Validation Accuracy Analysis and 
Discussion
	 In the subsequent analysis, a dataset of 
DR images24 with two classes, “No DR sign” and 
“With DR sign”, was used to train and validate 
several CNN algorithms, including LeNet-1, 
AlexNet, VGG16, PolyNet, InceptionV2, and 
Inception-ResNetV2. After training and validation, 
Inception-ResNetV2 showed the highest validation 
accuracy of 96%, followed by VGG16 with 94% 
accuracy. The other models showed comparatively 

lower accuracy rates, with LeNet-1 showing the 
lowest validation accuracy of 65%.
	 The Inception-ResNetV2 model achieved 
a high accuracy of 98.82% in training and 96.54% 
in validation, and its confusion matrix showed that 
it performed well on the test dataset, with a true 
positive rate of 96.1% and a true negative rate 
of 98.0%. The confusion matrix for Inception-
ResNetV2 showed that out of the 1500 test images, 
735 were correctly classified as having DR signs, 
and 720 were correctly classified as not having DR 
signs, as depicted in Figure 5.
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Fig. 8. The training and validation accuracy of VGG16 97.66% and 94.45% respectively

Fig. 9. The training and validation accuracy of PolyNet 93.33% and 80.51% respectively

	 LeNet-1 achieved the lowest accuracy 
among the six models with 65.77% in testing, and 
its confusion matrix showed that the model had 
difficulty distinguishing between the two classes. 
Specifically, LeNet-1 correctly classified only 75 
images as having DR signs, while misclassifying 
315 images as having no DR signs and 525 images 
as having DR signs when they actually had no DR 
signs, as shown in Figure 6.
	 AlexNet achieved a testing accuracy of 
80.37%, and its confusion matrix indicated that the 
model correctly classified 600 images as having 
DR signs and 675 images as having no DR signs. 

However, the model also misclassified 75 images 
as having no DR signs when they actually had DR 
signs, and 150 images as having DR signs when 
they actually had no DR signs as depicted in figure 
7.
	 VGG16 achieved a high testing accuracy 
of 94.45%, and its confusion matrix showed that 
the model correctly classified 715 images as having 
DR signs and 725 images as having no DR signs. 
However, the model also misclassified 25 images 
as having no DR signs when they actually had DR 
signs, and 35 images as having DR signs when they 
actually had no DR signs as shown in figure 8.
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	 PolyNet achieved a testing accuracy of 
80.51%, and its confusion matrix showed that the 
model correctly classified 450 images as having 
DR signs and 600 images as having no DR signs. 
However, the model also misclassified 150 images 
as having no DR signs when they actually had DR 
signs, and 300 images as having DR signs when 
they actually had no DR signs, as illustrated in 
figure 9.
	 Inception V2 achieved a testing accuracy 
of 80.75%, and its confusion matrix showed that 
the model correctly classified 480 images as having 

DR signs and 590 images as having no DR signs. 
However, the model also misclassified 207 images 
as having no DR signs when they actually had DR 
signs, and 223 images as having DR signs when 
they actually had no DR signs.
	 The reason behind these results could 
be attributed to several factors, including the 
complexity of the model, the number of layers, 
and the type of architecture used. The Inception-
ResNetV2 model is a hybrid model that combines 
the strengths of the Inception and ResNet 
architectures, allowing it to capture both local and 

Fig. 10. The training and validation accuracy of Inception V2 83.02% and 80.75% respectively

Fig. 11. The training and validation accuracy of graph various CNN Algorithms
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global features effectively. Additionally, it has a 
larger number of parameters and is deeper than the 
other models, allowing it to learn more complex 
representations from the dataset. Inception-
ResNetV2 combines the strengths of Inception 
and ResNet, making it highly effective in image 
classification tasks. VGG16 is a deep convolutional 
neural network with 16 layers, which allows it to 
capture intricate patterns in the image data. On 
the other hand, models like LeNet-1 and Inception 
V2 have fewer layers, which can limit their ability 
to capture complex features and patterns in the 
dataset, leading to lower accuracy rates.
	 In terms of the comparative analysis, it 
was found that Inception-ResNetV2 outperformed 
the other models in terms of both training and 
validation accuracy. This suggests that the hybrid 
architecture of Inception-ResNetV2 is highly 
effective in classifying DR images. VGG16 also 
showed good performance, with a high validation 
accuracy of 94%. The other models, including 
LeNet-1, AlexNet, PolyNet, and Inception V2, 
showed lower accuracy rates, indicating that 
their architectures may not be well-suited for this 
particular image classification task.
	 In the finale, the confusion matrices 
revealed that Inception-ResNet V2 had the best 
overall performance on the test dataset, with a 
high true positive and true negative rate. The other 
models achieved varying degrees of accuracy, 
with LeNet-1 performing the worst and VGG16 
achieving the second-best performance. The 
confusion matrices provide additional insights into 
the models’ strengths and weaknesses, indicating 
that some models struggled with distinguishing 
between the two classes.

CONCLUSION AND FUTURE SCOPE

	 The capacity of deep learning algorithms 
to be understood is AI’s largest issue. A deep 
learning algorithm will always diagnose a fundus 
shot as an image with DR without presenting more 
understandable justifications for its choice. In this 
study, both classification and segmentation have 
been done with a residual-based architecture. This 
means an inception-resnet hybrid classification 
system and a fully residual U-net architecture for 
the segmentation system. We carried out a fivefold 
cross-validation before using the suggested dataset 

to verify the randomness of selecting the training 
set and testing set. 
	 In wrapping up, the analysis shows 
that Inception-ResVetV2 and VGG16 are highly 
effective models for classifying DR images, 
while models like LeNet-1, AlexNet, PolyNet, 
and InceptionV2 may not be as suitable. The 
results emphasize the importance of selecting the 
appropriate CNN architecture for a given image 
classification task.
	 These hybrid architectures and the 
entire prototype system are responsible for fast 
and reliable classification, along with optimal 
segmentation tasks on CT scans and fundus image 
analysis to identify the exact location of laser spots 
on sensitive eye tissue. After early recognition of 
those sensitive spots, proper medication consulting 
or mark removal surgery will take place for further 
treatment.
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