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 Respiratory infections pose a severe danger to public health's morbidity and death 
on a global scale. Delivery via the lungs can be accomplished using several drug delivery tools, 
including nebulizers, MDI’s and dry powder inhalers. Metered dosage inhalers are the most 
intriguing and the clinician's first preference out of all of them. This review emphasized based on 
metered dose inhalers for the delivery of pulmonary drugs. This study focuses on the provision 
of various therapies employing lipid nanocarriers, polymeric nanoparticles dendrimers & 
micelles, among others, using metered dose inhalers, liposomes, solid lipid nanostructures, 
nanostructured lipid carriers, and other topics were thoroughly explored. The market scenario 
for different MDI’s as well as information on digital metered dose inhalers is also covered in 
this review.
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	 A	significant	global	hazard	to	morbidity	
and	 mortality	 in	 public	 health	 is	 posed	 by	
respiratory	illnesses.	The	world’s	2	billion	people	
are	 exposed	 to	 environmental	 pollutants	 from	a	
variety	 of	 sources,	 such	 as	 smoking	 cigarettes,	
incinerators,	 fireplaces	 for	 heating	 and	 cooking,	
etc.	In	addition,	40	lakh	people	die	from	chronic	
respiratory	disorders	worldwide.	According	to	The	
Forum	of	 the	 International	Respiratory	Society,	
there	 are	 five	main	 respiratory	 diseases,	 or	 the	
“Big	5,”	which	include	lung	cancer,	acute	lower	
respiratory	tract	infections,	COPD	&	asthma	
Out	of	these	“major	5,”	over	65	million	individuals	
have	COPD,	and	3	million	people	pass	away	from	
it	 every	 year,	making	 it	 the	 3rd	 greatest	 cause	

of	mortality	 globally.	Around	 14%	of	 children	
worldwide	 have	 asthma.	Millions	 of	 people	
worldwide	lose	their	lives	to	pneumonia	each	year,	
with	pneumonia	being	the	top	cause	of	mortality	
in	 children	 less	 than	 the	 age	of	five.	Around	10	
million	people	are	infected	with	TB	each	year,	and	
1.4	million	of	them	pass	away	from	it,	making	it	
among	 the	most	prevalent	and	deadly	 infectious	
diseases.	The	deadliest	malignancy,	 lung	cancer,	
claims	over	1.6	million	lives	annually	1.	
	 Although	these	respiratory	disorders	have	
a	significant	global	impact	on	death	and	there	hasn’t	
been	 enough	public	 awareness	 of	 and	 focus	 on	
morbidity.	In	comparison	to	other	disease	entities	
including	diabetes,	Alzheimer’s	 disease,	 cancer,	
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cardiovascular	disease	&	stroke,	research	funding	
has	likewise	not	accelerated	considerably2,3 4.
	 Over	the	previous	two	decades,	devices	
to	treat	respiratory	disorders	have	been	developed	
using	nanotechnology	and	nanoparticles	to	deliver	
drugs	more	effectively.	
	 Nanoparticles	 have	 attracted	 attention	
in	 numerous	fields	 during	 the	 last	 two	decades,	
including	 semiconductor,	medicinal,	 chemical,	
and	environmental5.	Due	to	the	supremacy	of	the	
quantum	effect	&	a	significant	increase	in	surface	
area,	 nanoparticles	with	 sizes	 less	 than	 100	nm	
exhibit	unique	features	that	make	them	appropriate	
for	 cutting-edge	 applications	 in	 electronics,	
defence,	communication,	energy,	and	biomedicine,	
including	drug	administration5 6.
	 According	to	the	Noyes-Whitney	equation	
and	 the	Ostwald-Freundlich	 equation,	 the	 huge	
surface	area	boosts	dissolution	kinetics	&	enhances	
saturation	solubility.7 8

	 Because	 of	 the	wide	 surface	 area,	 the	
medication	is	released	fast	from	the	concentration	
of	 the	 drug	 at	 the	 absorption	 site.	 Numerous	
methods,	including	chemical	modification,	stability	
of	amorphous	particles,	canonization,	and	emulsion	
formulation,	have	been	devised.
	 Numerous	 administration	 methods,	
including	 intravenous,	 oral,	 transdermal,	 &	
ocular,	utilize	nanoparticles.	However,	pulmonary	
delivery	 is	 uncommon.	Unlike	 other	 routes	 of	
administration,	 pulmonary	 distribution	 offers	
certain	 advantages	 such	 as	 avoiding	 first-pass	
hepatic	metabolism	 and	 lowering	dose	 and	 side	
effects.	Additionally,	it	enables	the	administration	
of	medications	for	conditions	like	cystic	fibrosis,	
COPD,	 and	 asthma.	 Fast	 absorption	 is	made	
possible	by	the	huge	surface	area	of	the	lungs,	thin	
epithelial	 layer,	and	abundant	blood	flow,	which	
makes	pulmonary	delivery	appealing.	Due	 to	 its	
non-invasive	nature,	patients	are	more	willing	to	
comply9.
Pulmonary drug delivery
	 For	 many	 years,	 the	 medication	 for	
asthma	 and	COPD	 has	 benefited	 greatly	 from	
pulmonary	medication	delivery	2.	It	is	amongst	the	
most	crucial	areas	for	research	and	development	
because	it	provides	patients	with	the	highest	level	
of	 therapeutic	 effectiveness	 by	 quickly	 acting	
on	 drugs	 that	 target	 the	 lungs	 directly10.	When	
compared	to	oral	formulation,	the	overall	dose	is	

decreased.	Salbutamol	dosages,	for	example,	are	
decreased	by	a	factor	of	10	to	20.11.
	 Maximum	lung	specificity	also	minimizes	
the	undesirable	systemic	effects	12.	There	are	several	
therapeutic	inhaler	devices	on	the	market,	including	
Dry	 Powder	 Inhalers,	 Nebulizers,	 Soft	Mist	
Inhalers,	 and	 pressurized	metered	 dose	 inhalers	
(pMDIs)13 14.	As	 long	as	 they	are	used	properly,	
comprehensive	reviews	and	meta-analyses	of	the	
evidence	have	shown	that	nebulizers,	pMDIs,	and	
DPIs	have	roughly	equivalent	effects	for	delivering	
glucocorticoids	and	bronchodilators	1516.
Types of inhalers
Dry Powder Inhalers
	 Bell	 and	 colleagues	 unveiled	 the	 first	
inhaler	 device	 that	 utilized	DPI	 technology	 in	
197117.	 Then,	 sophisticated	DPI	 devices	were	
created	for	COPD	&	asthma	patients.	Inhaled	dry	
powder	 formulations	 are	 loose	 agglomerates	 of	
micronized	 aerodynamically	 small	medication	
particles	 less	 than	5ìm.	Drug	particles	 that	have	
been	micronized	 and	 adhered	 to	 large	 lactose	
carriers	are	combined	in	carrier-based	interactive	
mixes.	Aerosolization	of	the	powder	formulation	
is	done	using	a	DPI	device,	which	de-agglomerates	
or	 separates	 the	 drug	 particles	 from	 the	 carrier	
before	delivering	the	dose	to	the	patient’s	lungs.	
DPI	 is	 categorized	 generically	 into	 3	 types:	
single-dose	DPIs,	 active	or	power-assisted	DPIs	
&	multiple-dose	DPIs18.	Breath	activation	is	used	
with	single-dosage	DPIs,	which	have	buttons	that	
are	perforated	with	needles	inside	the	device.	Drug	
delivery	is	dependent	on	the	patient’s	respiratory	
system.	DPIs	with	many	doses	are	an	alternative	
to	DPIs	with	a	single	dose.	Devices	with	multiple	
doses	 are	 also	 those	with	multiple	 doses	 and	
several	units	of	DPI	19.	Power-aided	DPI	devices	
have	been	created	to	address	the	issue	of	COPD	
patients	not	receiving	enough	inhalation	therapy.	
These	devices	have	low-flow	activation	capabilities	
and	enhance	lung	deposition.	Piezoelectric	crystals	
that	vibrate	and	battery-powered	impellers	are	used	
to	spread	the	medication.	The	main	advantages	of	
DPIs	are	that	they	don’t	require	hand	strength	or	
coordination	 of	 inhalation	with	 activation.	DPIs	
must	be	primed	and	loaded	in	elderly	individuals	
who	have	Parkinson’s	 disease,	 joint	 discomfort,	
and	stroke-related	problems.	Clinical	research	also	
demonstrates	high	patient	compliance	20.



435Barve et al., Biosci., Biotech. Res. Asia,  vol. 20(2), 433-447 (2023)

Nebulizers
	 Nebulizers	 are	 crucial	 for	 treating	
conditions	where	 patients	 are	 unable	 to	 obtain	
the	required	flow	rates	and	substantial	pulmonary	
dosages	are	required.	There	are	three	different	types	
of	nebulizers	depending	on	how	the	drug	solution	
is	converted	 into	aerosol:	Vibrating	mesh,	Jet	&	
Ultrasonic21.	 Jet	 nebulizers	 are	 frequently	 used	
to	 turn	 liquid	medications	 into	 aerosol	 particles	
using	 compressed	 gas.	 Limitations	 include	
longer	 treatment	 times,	mechanical	 force,	 and	
noise.	 Portable	 and	 silent,	 ultrasonic	 nebulizers	
function.	 However,	 because	 ultrasound	 heats	
the	medicine,	 it	 is	 incompatible	with	 thermally	
sensitive	medications	 like	 protein22.	The	newest	
technology,	 the	 vibrating	mesh	nebulizer,	 offers	
benefits	 such	 as	 a	 short	 treatment	 time,	 little	
leftover	volume,	and	increased	aerosol	delivery23.	
The	main	obstacle	is	the	price.	Since	all	of	these	
devices	continuously	create	an	aerosol,	a	significant	
proportion	of	medication	is	lost	during	exhalation.	
The	main	drawbacks,	however,	are	 that	 they	are	
heavier,	 require	more	 time	 for	 administration,	
and	 have	 a	 poorer	 delivery	 efficiency24.	 Philips	
I-Neb®	&	Activaero	AKITA®	nebulizer	systems,	
two	newly	 created	 and	 commercially	 accessible	
advanced	 technology-based	 nebulizers,	 are	 just	
two	examples25,26.	
Soft MIST Inhalers
	 Microelectronic	 dosimetric	 systems	
are	 included	 in	 soft	mist	 inhalers	 (SMI,	 such	as	
Respimat).	A	fixed	 volume	of	 a	 solution	 of	 the	
drug	is	sucked	up	into	the	dosing	system	when	an	
SMI	is	manually	primed	through	a	nozzle	with	2	
condensed	outlet	channels	that	were	carved	using	
microchip	 technology.	 Soft	mist	 inhaler	 aerosol	
outperforms	a	pMDI	in	terms	of	sustained	duration,	
low	velocity,	 and	 high	fine	 particle	 fraction27,28.	
Compared	to	a	pMDI,	the	SMI	version	has	two	to	
three	times	as	much	pulmonary	deposition29,30.
Metered Dose Inhalers(MDI’s)
	 MDI’s	are	the	most	promising	pulmonary	
medication	 delivery	method	 available.	Metered	
dose	 inhalation	 therapy	 can	 now	be	 used	more	
effectively	thanks	to	recent	advancements	 in	 the	
fields	of	Nanotechnology,	Biotechnology	Particle	
engineering,	 Material	 sciences,	 and	 related	
sciences29,30.	Metered	dose	inhalable	formulations	
based	 on	 nanoscience	 serve	 to	 enhance	 therapy	
outcomes	 and	 reduce	 negative	 side	 effects31.	To	

study	 the	 pulmonary	 delivery	mechanism	 and	
therapeutic	 effect,	 a	 variety	 of	 drug	 delivery	
systems,	 including	polymeric	 nanocarriers32	 that	
include	 polymeric	 nanoparticles,	 dendrimers,	
micelles	&	lipid-based	nanocarriers33,34,	have	been	
integrated	with	MDI.	
Nanocarriers
Polymeric Nanocarriers
 One	 of	 the	 extensively	 researched	
nanocarriers	 for	 a	 variety	 of	 drug	 delivery	
applications,	 such	 as	 cancer,	HIV,	COVID-19,	
&	 Inflammatory	 Bowel	 Disorder	 (IBD),	 is	
polymeric	nanocarriers35,36.	Micelles	and	polymeric	
nanoparticles	are	the	two	most	prevalent	polymeric	
nanocarriers.	 Polymeric	 nanoparticles	 have	
received	 substantial	 research	 because	 of	 their	
tremendous	 potential	 as	Drug	Delivery	 systems	
for	treating	a	variety	of	ailments37.	Before	creating	
nanoparticles,	 polymers	 can	 be	modified	 and	
functionalized	 to	 create	 functional	 polymeric	
nanoparticles.	Through	 encapsulation	 into	 the	
polymer,	 Drug	 &	 therapeutic	 agents	 can	 be	
delivered	to	the	exact	site	of	action	(deep	lungs).	
It	is	possible	to	create	drug-loaded	nanoparticles	
by	encasing	the	drug	in	a	polymeric	matrix38,39.	The	
polymers	that	have	received	the	most	attention	for	
research	 include	 cyclodextrins,	 polyanhydrides,	
poly	(ortho-esters)	,	polyhydroxyalkanoates,	poly-
(lactic-co-glycolic-acid)	(PLGA),	poly(lactic	acid),	
chitosan	&	poly	(phosphonates).	Polymers	can	be	
easily	 changed	 to	 respond	 to	 stimuli	 by	 adding	
the	 right	 chemical	 linkages	 40,41.	 Compared	 to	
inorganic	nanoparticles,	polymeric	nanoparticles	
demonstrated	 less	 toxicity42.	 Controlling	 the	
physicochemical	parameters	of	the	polymer	allows	
one	 to	alter	 the	kinetics	of	drug	 release.	Widely	
employed	 in	metered	 dosage	 inhalation-based	
medication	delivery	are	polymeric	nanoparticles.	43 
developed	and	studied	cross-linked	chitosan-based	
NP’s	based	pMDIs	to	transport	small	molecules	to	
the	peripheral	airways	to	address	this	problem44.	
Using	 polyethylene	 glycol	 (PEG)	 1000	 (30%),	
sodium	 tripolyphosphate	 (1%)	&	 cross-linked	
chitosan	(5%)	NP’s	were	mostly	produced.	Cross-
linked	 chitosan	NP’s	were	 also	mixed	with	 the	
propellant	hydrofluoroalkane	(HFA)	227	to	create	
pMDIs.	The	 spherical,	 smooth-surfaced	NP’s	
had	a	Hydrodynamic	diameter	of	193.3	nm	and	a	
Zeta	Potential	of	+28.2	mV.	Cationic	crosslinked	
chitosan	PEG	1000	NP’s	did	not	assemble	at	the	
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lung	pH.	When	dispersed	in	propellant	HFA-227,	
Cross-linked	 chitosan	 PEG600	&	 	 5000	NP’s	
rapidly	 sedimented	 or	 creamed,	whereas	 cross-
linked	 chitosan	PEG1000	NP’s	 displayed	 good	
physical	stability	and	dispersibility.	Before	being	
dispersed	 in	HFA-227,	 the	 PEG	 incorporation	
during	 NP’s	 formation	 changed	 the	 surface	
characteristics	of	the	NP’s	and	provided	effective	
steric	 stability41,44.	Additionally,	 the	 dispersion	
characteristics	 of	 crosslinked	 chitosan	 NP’s	
are	 enhanced	 by	 the	 amphiphilic	 character	 of	
PEG	with	 an	 appropriate	Molecular	Weight.	To	
comprehend	the	aerodynamic	performance,	cross-
linked	 chitosan	 nanoparticles	were	 tagged	with	
Fluorescein-5-Isothiocyanate	(FITC).	The	Cross-
linked	 chitosan	NP’s	 that	were	 FITC-labelled	
showed	 dimensional	Hydrodynamics	 and	Zeta	
Potential	measurements	of	203	nm	and	+24	mV,	
resp.	The	work	 briefly	 highlights	 the	 potential	
of	 crosslinked	 chitosan-PEG	 1000-based	NP’s	
as	 carriers	 for	 the	 delivery	 of	 small	molecules	
&	medicinal	 agents	 to	 the	 peripheral	 airways44.	
Currently,	 chemotherapy,	 radiation	 therapy,	
surgery,	 immunotherapy,	 and/or	 a	 combination	
of	these	are	frequently	used	to	treat	lung	cancer.	
Chemotherapeutic	 drugs’	 systemic	 delivery	 to	
the	 lung	 tumour	 is	 the	main	 obstacle.	Utilizing	
the	method	 of	 precipitation	 and	 the	Schiff	 base	
re-arrangement	methodology,	 the	 pH-sensitive	
mPEG-1K	DOX	conjugated	NPs	were	created45,46.	
The	NPs	 had	 average	 particle	 sizes	 of	 104	 nm	
and	DOX	loadings	of	32.7%,	respectively.	When	
placed	in	an	acidic	environment	(pH	5.5	lysosomal	
pH/endosomal),	 as	opposed	 to	 the	physiological	
environment(pH	 7.4),	mPEG-1	K	DOX	 linked	
NP’s	with	pH	sensitivity	demonstrated	increased	
DOX	release	(85%).	Human	lung	Adenocarcinoma	
cells	were	used	in	 in-vitro	cytotoxicity	research,	
and	NPs	displayed	IC50	values	that	were	roughly	
24-fold	lower	than	those	of	NPs	made	using	mPEG-
5	K.	Additionally,	 the	 rate	 and	 extent	 of	NP’s	
internalization	within	cells	follow	a	similar	trend.	
Additionally,	to	create	pMDIs,	mPEG-1	K	DOX	
linked	NPs	with	 pH	 sensitivity	were	 distributed	
into	 the	propellant	HFA	227	with	ethanol	acting	
as	a	cosolvent.	FPF	and	MMAD	of	NP’s	during	
in-vitro	 aerodynamic	 analysis	were	 63.5%	 and	
1.6	m,	respectively45.	The	physical	and	biological	
characteristics	 of	 the	NP’s	were	 significantly	
impacted	 by	 the	mPEG	molecular	weight	 (1K,	

2K,	and	5K	Da).	Cellular	Internalisation,	In-Vitro	
release	rate,		&	In-Vitro	destructive	ability	of	NP’s	
to	lung	cancer	cells	all	increase	with	a	shorter	PEG	
chain.	The	pMDI	formulations	of	NP’s	with	shorter	
PEG	chains	also	display	better	&	more	Aerodynamic	
performance	&	dispersibility.	Therefore	pulmonary	
administration	of	polymer-based	pMDI	offers	great	
promise	for	use	in	clinical	settings	when	treating	
lung	cancer45.	Recently,	cinnamaldehyde,	cineole,	
and	citral	were	 said	 to	be	used	 for	 stabilization.	
Thymopentin	NP’s-based	pMDI	was	created	by	47 
and	its	aerosolization	performance	was	carefully	
examined.	 Thymopentin	 NP’s	 were	made	 by	
bottom-up,	 freeze-drying	 Lecithin	&	 Lactose	
in	 a	water	 co-solvent	 system/tert-butyl	 alcohol,	
then	 centrifuging	 the	 excess	 lecithin	 out	 of	 the	
lyophilized	matrix	 43.	 Polydispersity	 index	 and	
particle	size	of	NP’s	were	significantly	influenced	
by	 lecithin	 concentration	&	 the	water	 content.	
Thymopentin	 NP’s	 with	 an	 average	 particle	
size	 of	 150nm	&	 a	 polydispersity	 index	 of	 0.1	
was	created	using	 small,	 spherical-shaped	water	
molecules	 that	made	 up	 33.3%(v/v)	 of	 the	 co-
solvent	system	&	20.0%(w/v)	of	the	organic	phase.	
Fabricated	 thymopentin	NP’s	were	 introduced	
to	a	glass	container	with	a	plastic	coating	and	a	
50	mL	 valve	 before	HFA	 134a	 propellant	was	
added.	 Finally,	 cineol	mixture/n-heptane	was	
added	to	give	suspension-type	pMDI	an	excellent	
dispersibility43.	During	aerosolization	studies	using	
a	Twin	 stage	 impinger(60	L/min),	Thymopentin	
NP’s	pMDI	demonstrated	FPF	greater	than	55%	
with	little	deposition	on	the	pMDI	actuator.	After	
26	weeks	of	storage,	the	Thymopentin	NP’s	pMDI	
had	a	relative	thymopentin	concentration	of	more	
than	97%	with	FPF	47%.	The	Thymopentin	NP’s	
were	 largely	 deposited	 to	 an	 area	matching	 the	
lower	pulmonary	airways,	indicating	a	favourable	
pulmonary	 drug	 delivery	 alternative,	 according	
to	 the	 Performance	 during	 aerosolization	 and	
pMDI	 suspension’s	 stability	 over	 six	months	
of	 storage43.	 Several	 polymeric	micelles	 are	
being	 developed	 for	 preclinical	 and	 clinical	
usage	 in	 the	delivery	of	 anticancer	medications.	
Comprehensive	 documentation	 of	 a	 review	 of	
micelles	made	with	 polymers	 for	 pulmonary	
medication	 administration	was	 provided	 by	 10.	
Conventional	 and	 functional	 polymeric	micelles	
are	 the	 two	main	 types	 of	 polymeric	micelles.	
The	 functional	 characteristics	 of	 polymeric	
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micelles,	 such	 as	 targeting,	 cell	 penetration,	
stimuli	 responsiveness,	&	mucoadhesive,	were	
demonstrated.	Direct	dissolving,	o/w	emulsification,	
solvent	 evaporation/thin-film	 hydration,	 freeze-
drying	&	 dialysis	 are	 all	methods	 for	 creating	
polymeric	micelles48.	 Polymers	with	 properties	
such	 as	 the	 composition	 of	 both	 hydrophobic	
&	 hydrophilic	 segments,	 biocompatibility,	 a	
low	 critical	micelle	 concentration,	 high	water	
solubility,	 biodegradability,	 non-toxicity	&	non-
immunogenicity	are	suitable	for	the	synthesis	of	
micelles	for	pulmonary	drug	delivery.	10.	provided	a	
table-format	summary	of	the	literature	on	the	use	of	
MDI’s	to	deliver	several	drugs	utilizing	polymeric	
micelles10.	Nanoparticles	 of	Anhydrous	 reverse	
micelle	were	created	by	45	to	address	the	unstable	
sedimentation	 of	 pressured	 metered	 dosage	
inhalers	containing	peptides.	Micelles	are	created	
by	Lipid	inversion	&	Freeze-Drying.	Synthesized	
anhydrous	 reverse	micelles	had	 a	polydispersity	
index	(PDI)	of	0.152	and	a	size	of	147	nm.	They	
demonstrated	an	appropriate	46.99%	fine	particle	
fraction	for	MDI’s.	They	demonstrated	a	12-week	
sedimentation	stability	of	4-6°C45.	There	 is	a	 lot	
of	room	to	investigate	the	use	of	micelles	in	MDI	
therapy	for	pulmonary	diseases.	
Dendrimers
	 Branching	 macromolecules 	 with	
monodispersed	 topologies	makeup	 dendrimers.	
Dendrimers	 are	 made	 up	 of	 a	 core,	 internal	
layers,	 and	 a	 terminal	 functional	 group,	which	
are	 three	 different	 structural	 components.	Click	
chemistry,	 multicomponent	 processes,	 and	
cycloaddition	 techniques	 can	 be	 used	 to	 create	
dendrimers46.	 Dendrimer-based	 drug	 delivery	
and	 targeting	 have	 advanced	 significantly	 in	
recent	 years.	 The	 use	 of	 dendrimers	 in	 the	
monitoring,	 therapeutics,	 diagnosis,	 imaging,	
&	 treatment	 of	many	 diseases	 is	widespread48.	
Due	 to	 their	high	density	and	surface	 functional	
group,	poly(amidoamine)	(PAMAM)	dendrimers	
are	extensively	researched	as	nanocarriers.	Drug	
solubility	 and	 bioavailability	 were	 improved	
by	 dendrimer	 conjugation49.	To	 investigate	 the	
effectiveness	 of	 siRNA	aerosol	 formulations	 in	
pMDI	and	in-vitro	transfection	within	a	pulmonary	
epithelium,	50	created	triphenylphosphonium	(TPP)	
adorned	Fourth	Generation	(G4)	poly(amidoamine)	
dendrimers.	 TPP	 and	 the	G4-dendrimer	were	
joined	utilizing	while	 chemistry	 is	 taking	place,	

whereas	 siRNA	&	 the	TPP-G4-dendrimer	were	
joined	using	electrostatic	contacts	(dendriplexes).	
TPP	density	&	N/P	ratio	had	a	striking	impact	on	
the	effectiveness	of	siRNA’s	invitro	transfection50.	
12	TPP	molecules	 conjugated	 to	Dendriplexes	
&	a	30	N/P	 ratio	 demonstrated	 the	best	 in-vitro	
gene	 knockdown	 efficacy	when	 used	with	 lung	
alveolar	 epithelial	 (A549)	 cells	 in	 the	 current	
investigation.	In-vitro	siRNA	transfection	efficacy	
was	significantly	improved	by	dendriplexes	over	
unmodified	 dendriplexes	 by	 a	 factor	 of	 two.	
Dendriplexes	 showed	 zeta	 potentials	 of	 40mV,	
363nm	&	0.36,	 resp.,	 for	 their	Hydro-dynamic	
diameter	&	Polydispersity	Index.	Using	mannitol	
as	 a	 carrier,	 Spray-drying	was	 used	 to	 create	
inhalable	 dendriplexes	microparticles50.	 Spray-
dried	 nano	 complexes	with	 a	 smooth,	 spherical	
form	 and	 geometric	 and	 solvated	 diameters	 of	
2.4	 and	 4.2	 ìm,	 resp.	 demonstrated	 good	 yield	
(76%)	 and	 strong	 loading	 efficiency.	Using	 the	
Andersen	Cascade	 Impactor	 (ACI)	 at	 28.3	 L/
min,	nano	complexes	pMDI	(63L	metering	valve)	
were	 created	using	 the	HFA-227	propellant	 and	
displayed	MMAD	&	 FPF	 of	 3.8ìm	&	 50.3%	
respectively.	When	compared	to	nano	complexes	
DPI,	 the	 pMDI	 showed	 a	 significant	 1.3-fold	
improvement	in	FPF.	As	a	result,	the	TPP	conjugate	
G4-dendrimer	provides	a	special	stage	to	enhance	
the	 biological	 effectiveness	 of	 siRNA	 during	
pulmonary	distribution50.	Using	poly(D,	L-lactide-
co-glycolide),	 51	 created	 core-shell	 structures	
with	 3-amine-terminated	 poly	 (amidoamine)	
dendrimers	 (PLGA).	The	 airway	 epithelial	 cell	
line	 from	the	humans	 (Calu-3)	model	&	aerosol	
characteristics	 by	multistage	 cascade	 impactor	
were	 used	 to	methodically	 evaluate	 dendrimers	
for	in-vitro	cellular	transport	&	absorption.	With	
the	 use	 of	 isothiocyanate	 chemistry,	 fluorescein	
isothiocyanate	 (FITC)	 was	 first	 attached	 to	
dendrimers	&	then	those	Dendrimers	were	loaded	
into	PLGA’s	biodegradable	polymeric	matrix	using	
a	solvent	for	core-shell	nanoparticles51.	Lyophilized	
core-shell	NP’s	(245nm)	in	smooth	spheres	had	a	
loading	 efficiency	of	 7.8%	&	 	Zeta	Potential	 of	
10	mV.	An	 in	 vitro	 experiment	 using	 core-shell	
NP’s	 in	 1X	mucus	with	Hank’s	Balanced	 Salt	
solution	 (pH	7.3)	 showed	persistent	 release	 that	
could	 be	 attributed	 to	 diffusion	 processes	 from	
PLGA	polymeric	matrix.	After	2	days	of	exposure,	
core-shell	NP’s	 had	 no	 harmful	 effects	 on	 the	
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monolayers	of	Calu-3	cells51.	The	airway	epithelial	
model	 revealed	 that	 core-shell	 NP’s	 appeared	
to	 be	 permeable,	 the	 same	 as	 a	 paracellular	
marker	(dextran).	Dendrimer’s	pattern	of	cellular	
internalization	 and	 transport	 are	both	 influenced	
by	 core-shell	NP’s.	Throughout	 the	 trial,	which	
lasted	 for	 5	 hours,	 core-shell	NP’s	 effectively	
crossed	 the	 lung	 epithelium.	ACI(28.3	 L/min)	
successfully	 generated	MMAD	 (3	 ìm)	&	 FPF	
(55%)	for	 the	pMDI(HFA	227)	of	 the	core-shell	
NP’s	aerodynamic	study.	In	conclusion,	core-shell	
NP’s	pMDI	is	an	essential	option	to	control	cellular	
absorption	&	movement	of	therapeutic	substances	
&	may	be	 investigated	 to	 achieve	 desired	 local	
or	 systemic	 drug	 administration51.	 Polyester	
dendrimers	with	G3(0.8nm)	&	G4(1.3nm)	FITC	
conjugations	displayed	Zeta	potentials	of	2.3mV	
&	1.3mV,	resp.	G4	polyester	dendrimers	that	had	
been	PEGylated	 (PEG	1000)	 displayed	 average	
particle	 sizes	&	Zeta	 potentials	 of	 4.2nm	 and	
0.0mv,	resp.	PEGylated	G4	polyester	dendrimers	
did	 not	 significantly	 degrade	 in	 physiological	
buffer	 solution(pH	 7.4)	 until	 day	 5	&	 after	 30	
days,	 the	 dendrimer	 displayed	 a	 degradation	
profile	comparable	to	the	unchanged	dendrimer52.	
The	 increased	 solvation	 of	 the	 dendrimers	 by	
the	HFA	utilized	to	prepare	pMDI	is	responsible	
for	 the	 good	 aerodynamic	 characteristics.	 In	 a	
nutshell,	PEGylation	of	polyester	dendrimers	has	
a	major	 impact	 on	 aerodynamic	 performance,	
cellular	uptake,	and	degradation.	These	combined	
biological	and	aerodynamic	findings	support	 the	
use	of	dendrimer	synthesis	and	PEGylation	to	alter	
their	 interaction	with	 the	Pulmonary	Epithelium	
&	 to	 formulate	 them	 for	 use	 in	 portable	 pMDI	
delivery	systems52.	Additionally,	pMDIs	based	on	
acid-labile	G3-NH2-PEG1000-DOX	dendrimers	
were	investigated	for	Pulmonary	Drug	Delivery53.	
The	 degree	 of	 PEGylation	 can	 be	 employed	 to	
adjust	the	carrier	characteristics	during	pulmonary	
medication	 delivery.	Being	 able	 to	 effectively	
limit	 lung	 retention	 time,	PEGylated	Dendrimer	
Conjugate	is	a	useful	treatment	option	for	primary	
lung	 cancer	 with	 metastatic	 locations,	 lung	
metastases,	&	 primary	 non-metastatic	 cancer53.	
Dendriplexes	 microparticles	 demonstrated	
GSD(3.8)	FPF(48.9%)	&	MMAD(2.6ìm)	adequate	
for	 pulmonary	 delivery	 during	 aerodynamic	
evaluation	 utilizing	ACI	 (28.3	 L/min).	These	
findings	 demonstrated	 that	 the	 strategy	 using	

dendriplexes	microparticles	had	a	higher	potential	
for	 transporting	 biological	 materials	 to	 the	
pulmonary	airways54.
Lipid-based Nanocarriers
	 Lipid-based	 nanoparticles	 have	 certain	
characteristics	 that	 set	 them	 apart	 from	 other	
nanocarrier	systems.	Numerous	lipid	nanoparticles	
exist,	 including	 self-emulsifying	 drug	 delivery	
systems,	solid	lipid	nanoparticles,	nanostructured	
lipid	 carriers,	 and	 liposomes.55.	 Lipid	 bilayers	
make	up	the	vesicular	carriers	known	as	liposomes.	
The	 liposome-encapsulated	medication	provides	
a	 longer	 therapeutic	 effect	 because	 of	 its	 depot	
action.	The	versatility	of	liposomes	allows	for	the	
loading	of	both	lipid-	and	water-soluble	medicines	
as	well	as	gene	delivery56.	Liposomes	exhibit	up	to	
a	24-hour	retention	period	in	the	lungs.	Interleukin	
2,	Catalase,	Budesonide,	Insulin,	Rifampicin,	9NC	
&	polyethyleneimine-p53	DNA	are	all	delivered	
to	the	lungs	using	liposomes57.	However,	clearing	
the	respiratory	tract	of	the	particles	is	also	more	
crucial.	 Particle	 physicochemical	 characteristics	
affect	 particle	 clearance.	The	main	 factors	 that	
affect	how	effectively	deposited	nanoparticles	are	
cleared	are	age,	exercise,	influenza,	and	pneumonia	
58.	 Nanocarriers	 made	 of	 solid	 lipids	 are	 the	
most	intriguing.	The	1st	Generation	of	solid	lipid	
nanoparticles	was	created	in	the	1990s	by	research	
teams	led	by	59.	The	drug	is	put	into	the	lipid	matrix	
of	SLN’s,	which	is	stabilized	with	an	emulsifier	or	
surfactant.	SLNs	have	a	size	range	of	40	to	1000	
nm.
	 The	 main	 benefits	 of	 SLNs	 include	
physical	 stability,	 drug	 degradation	 prevention,	
regulated	release,	and	minimal	cytotoxicity60.	Due	
to	their	favourable	tolerance	in	the	airways,	SLNs	
are	attractive	for	pulmonary	administration.	SLNs	
have	deep	lung	deposits	that	are	simple	to	aerosolize.	
Due	to	the	accumulation,	adhesion,	&	holding	of	
the	SLN’s	in	the	lungs,	the	medication	is	released	
slowly,	 reducing	 the	need	for	dosing32.	Over	 the	
past	20	years,	business	interest	in	nanostructured	
lipid	 carriers	 has	 grown	 significantly.	When	
delivering	 cancer	 chemotherapeutics,	NLCs	 are	
more	efficient.	If	have	reasonable	tissue	toxicity,	
targetability,	stability,	specificity,	and	steadiness32.	
To	manufacture	 surfactant-coated	Plasmid	DNA	
nanoparticles	for	gene	delivery	using	a	pressurized	
metered	 dose	 inhaler,	 61	 created	 a	 unique	 low-
energy	nanotechnology	approach.	Using	ethanol	
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as	 a	 cosolvent	 and	 hydrofluoroalkane	 134a	 as	
a	 propellant,	 lyophilized	 pDNA	was	 added	 to	
pMDI.	Utilizing	 transfection	 analysis,	 in-vitro	
toxicity	assay	results	revealed	no	appreciable	loss	
of	biological	functionality	&	cell	viability61.	
Biologics
	 Due	 to	 their	 use	 in	 treating	 serious	
respiratory	 illnesses	 like	 cancer,	 cystic	 fibrosis,	
and	tuberculosis	in	the	previous	years,	pulmonary	
administration	 of	 biological	 substances(e.g.,	
siRNA,	RNA,	 proteins,	DNA	&	 peptides)	 has	
attracted	significant	attention62,63.	 64	 study	of	 this	
application	focuses	on	inhaled	antibody	systems.	
To	enhance	the	Immunoglobulin	G’s	aerodynamic	
qualities,	Immunoglobulin	G	powder	was	created	
using	the	spray	drying	procedure	&	added	to	pMDI.	
Miscellaneous pMDI Formulations
	 Other	 formulations	were	 examined	 for	
medication	delivery	using	MDI	in	addition	to	the	
drug	delivery	systems	already	mentioned.	Using	
pMDI,	65	created	assemblages	of	microcrystals	&	
designed	microparticles	 to	 distribute	medication	
actives	 (formoterol 	 fumarate	 dihydrate,	
mometasone	furoate	&	glycopyrrolate)	effectively	
and	consistently.	Spray	drying	was	initially	used	
to	 create	 phospholipid/calcium	 chloride	 porous	
microparticles,	whereas	 air	 jet	milling	was	used	
to	 create	 drug	microcrystals.	Microcrystals	 of	
mometasone	 furoate	 (1.0ìm),	 Glycopyrrolate	
(1.7ìm)	 &	 Formoterol	 Fumarate	 Dihydrate	
(1.4ìm),	revealed	mean	particle	sizes	adequate	for	
pulmonary	drug	delivery,	as	did	spray-dried	porous	
microparticles	(2.3ìm).	A	layer	with	a	thickness	of	
about	100nm	was	created	by	an	amphiphilic	particle	
surface,	and	designed	microparticles	also	displayed	
a	corrugated	surface.	In	conclusion,	co-suspension	
technology-based	dual	or	triple	combination	pMDI	
is	 effective	 for	 treating	 respiratory	 diseases65.	
The	total	dose	of	Sibenadet	Hydrochloride	pMDI	
(1–25	mg)	 did	 not	 significantly	 affect	 the	 FPF,	
according	 to	 an	 aerodynamic	 study.	 Relative	
interparticle	 interactions	with	 the	micronized	
carrier	 particles	 contributed	 significantly	 to	 the	
decreased	 aerosol	 performance	 of	 sibenadet	
hydrochloride	with	binary	particulates.	66.	Surface	
energetics	 of	 the	 drug	&	carrier	 are	 responsible	
for	 controlling	 particle	 cohesion/adhesion,	
interparticle	interactions	&	sedimentation	rate	of	
formulations.66.	To	treat	pulmonary	hypertension,	
67	created	cyclodextrin	(CD)-based	sildenafil	citrate	

pMDI.	Dried	 ethanol	 and	HP-CD,	CD,	 and	CD	
were	predominantly	used	in	the	production	of	the	
sildenafil-CD	(1:17)	combination.
	 Due	 to	 the	 unequal	 distribution	 of	 the	
pMDI	clouds	over	the	blood	artery	&	difficulty	in	
achieving	precise	control	on	the	spraying	region,	
compared	to	sildenafil	complex	pMDI,	sildenafil	
complex	 intravenous	 injection	 exhibited	 better	
interaction	with	blood	vessel	smooth	muscle	cells.	
67.	In	short,	CD-based	pMDI	is	an	important	step	
toward	effective	pulmonary	medication	delivery.
	 Treprostinil	 MDI	 (2–3	 puffs)	 was	
inhaled	as	a	whole,	causing	selective	pulmonary	
vasodilatation	 that	 peaked	 after	 30–45	minutes	
and	continued	to	have	an	effect	on	hemodynamic	
for	 the	 remaining	 two	 hours.	Treprostinil	MDI	
demonstrated	satisfactory	results	in	the	medication	
of	 pulmonary	 hypertension;	 nevertheless,	 a	
controlled	clinical	 trial	 is	 required	 to	 investigate	
several	 important	 concerns,	 including	 ease	 of	
handling,	device	size	&	patient	autonomy	&	the	
formulation’s	long-term	efficacy	68.	
	 The	 atomized	Clarithromycin	 particles	
which	were	collected	from	stage	4	of	the	cascade,	
had	 a	 corrugated	 spherical	 shape	 because	 of	
the	 quick	 evaporation	 of	 the	 propellant	 and	 co-
solvent	after	actuation,	in	contrast	to	the	raw	clear	
Clarithromycin	 particles,	which	 had	 columnar	
surface	morphology.	Furthermore,	the	fact	that	the	
deposited	clarithromycin	particles	have	no	clearly	
defined	angular	morphology	confirms	the	material’s	
indeterminate(amorphous)	character.	Additionally,	
the	Clarithromycin	pMDI	 formulation	had	good	
aerodynamic	properties	and	was	physically	stable	
for	a	month(storage	at	4	&	37°C).	In	essence,	the	
study	suggested	that	lung	inflammatory	illnesses	
may	be	treated	by	creating	a	solution-based	pMDI	
that	contains	low-dose	macrolide69.	
	 The	 MMAD	&	 FPF	 of	 low-dosage	
diclofenac	pMDI	were	lower,	at	9.94	ìm	&	7.1%	
respectively.	Additionally,	 pro-inflammatory	
cytokines	 IL-6	 and	 IL-8	 significantly	 decreased	
during	 the	 evaluation	 of	 the	 anti-inflammatory	
action	 in	 the	 airway	 cell	 culture	models	 of	 the	
Cystic	Fibrosis	(CuFi-1)		&	Normal	Lung	(NuLi-
1)		caused	by	the	Air	Liquid	interface.	In	short,	the	
current	study	suggests	 that	aerosolized	low-dose	
diclofenac	pMDI	may	be	an	effective	 inhalation	
anti-inflammatory	medication	for	the	medication	
of	cystic	fibrosis70.	
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	 In	comparison	to	the	tablet	(2.5mg),	the	
HFA	134a-based	Zolmitriptan	pMDI	demonstrated	
1.96-fold	reduced	Tmax,	1.19-fold	greater	Cmax,	
&	 1.25	 times	 higher	 relative	 bioavailability.	
In	 short,	 HFA	 134a	 propellant-based	 pMDI	
formulations	 of	 anti-migraine	medications	may	
be	 a	 good	 substitute	 for	migraine	 therapy	 since	
they	 act	more	 quickly	 73.	 Ipratropium	Bromide	
&	Fenoterol	Hydrobromide	pMDI	are	solutions-
based	drugs	that	71	thoroughly	examine	the	effects	
of	 formulation	 composition	 (ethanol,	water	&	
propellant)	on	stability	&	aerodynamic	functioning.	
In	a	nutshell,	the	vapor	pressure	of	the	cosolvents,	
the	propellant,	and	the	dielectric	constant	should	
be	within	an	appropriate	range	to	impart	acceptable	
aerosol	 characteristics	 and	 physical	 stability71.	
To	 comprehend	 the	 aerodynamic	 performance,	
72	developed	montelukast	pMDI	employing	HFA	
134a	&	pre-mixed	HFA-134a/HFA-227	propellant.	
	 Nitric	Oxide	 levels	 in	NR-8383	 cells	
incubated	with	a	pre-mixed	propellant,	however,	
were	 considerably	greater	 than	 in	NR8383	 cells	
incubated	with	a	single	HFA	propellant.	Although	
montelukast	pMDI	formulations	are	non-toxic	&	
not	 anticipated	 to	 exacerbate	 airway	cells,	more	
in-vivo	 research	 is	 required	 before	montelukast	
pMDI	formulations	can	be	deemed	safe	72.		
	 According	 to	 a	 deposition	 study,	
theophylline	took	180	minutes	to	get	to	its	target,	
the	A3	adenosine	receptors	in	smooth	muscle	cells,	
where	it	could	start	working	its	effect.	Interleukin-8	
(IL-8)	levels	in	Calu-3	cells	treated	with	TNF	&	
plain	theophylline	were	found	to	be	4.5	and	1.81	
times	lower,	respectively,	than	those	in	theophylline	
pMDI	 during	 in-vitro	 inflammatory	 testing.	
Encapsulated,	 theophylline	 pMDI	 formulation	
minimized	side	effects	by	lowering	the	dose	needed	
for	local	therapy73.
MDI Devices: Effect of Various Parameters on 
Aerodynamics and Drug Deposition
	 An	MDI	is	a	small,	portable	pressurized	
inhalation	device	that	uses	a	propellant	to	administer	
a	specific	medicine	dose	to	the	patient	regularly	74.	
The	design	of	inhaler	devices	has	a	considerable	
impact	 on	 the	 results	 of	 the	 drug	 substance’s	
aerodynamic	profile	&	drug	delivery	process75,76.	
To	effectively	treat	chronic	respiratory	disorders,	
choosing	the	right	inhaler	device	is	essential.	The	
percentage	of	 the	 radiated	dose	 that	 is	settled	 in	
the	 lung	 and	 the	 volume	of	medicine	 deposited	

in	 the	 throat	 are	 the	major	 indicators	 of	 pMDIs	
aerodynamic	effectiveness	(i.e.	FPF).	
	 Furthermore,	 throat	 deposition	 is	
significantly	 influenced	 by	 droplet	 lifespan	
(evaporation	 duration;	 a	 discrete	 two-phase	
process),	 and	 FPF	 suggests	 that	 evaporation	
kinetics	significantly	controls	pMDI	drug	delivery.	
The	amount	of	medicine	 settled	 in	 the	 lung	and	
throat	(i.e.,	FPF)	is	significantly	influenced	by	the	
propellant	and	co-solvent	choices	made	77.	
	 Data	 show	 that	 higher	 sustained	 plume	
velocities	increase	fine	particles	around	the	spray’s	
periphery	due	to	better	shear,	and	that	fine	particles	
are	 formed	 by	 smaller	 orifices	 (0.22mm)	 and	
smaller	orifices.	The	drug	deposition	profile	and	
the	 formulation’s	 aerodynamic	performance	 are	
both	affected	by	a	little	adjustment	to	the	pMDI	
device78.	
Digital pMDI’s Devices
	 Digital	technology	may	improve	patient	
compliance	and	adherence	to	long-term	inhalation	
therapy.	 E-healthcare	 and	 remote	 technologies	
are	 alternatives	 to	 conventional	 laminating.	
E-healthcare	systems	have	 just	 lately	caught	 the	
interest	of	patients,	healthcare	professionals,	and	
researchers	in	the	biomedical	field.	For	the	creation	
of	 an	 absolute	 digital	 inhaler,	 several	 electrical	
and	mechanical	 devices,	 including	 a	 nebulizer	
chronology,	mechanical	 switches,	 an	 aerosol	
actuation	counter,	a	system	on	a	chip,	&	a	Bluetooth	
Low	Energy	module,	have	been	investigated	and	
analysed.	The	use,	purpose,	and	essential	clinical	
applications	of	the	electronic	monitoring	device	are	
discussed	elsewhere79.	Table	I	contains	a	list	of	the	
digital	pMDIs	devices	that	are	currently	offered.	
To	quantify	 the	finger	muscle	power	required	 to	
actuate	 pMDI	 formulation,	 80	 recently	 created	 a	
modified	pMDI	pinch	gauge.
	 According	 to	 studies,	 finger	muscular	
strength	should	be	assessed	when	choosing	a	pMDI	
device	 for	 senior	 asthma	patients.	 Patients	with	
lesser	finger	muscle	strength	are	advised	to	use	a	
pMDI	spacer80.	This	 is	where	 the	digital	pMDIs	
device	 comes	 into	 play	which	 is	 fast	 gaining	
popularity	and	holds	great	promise	because	it	may	
give	 patient-centered	 care	 along	with	workable	
solutions	for	pharmaceutical	companies,	patients,	
and	healthcare	practitioners	 to	enhance	patients’	
quality	of	life.	
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Clinical Potential of pMDIs 
	 The	advantages	of	MDI	over	other	devices	
have	been	discussed	in	great	detail	in	the	literature.	
We	 think	MDI	 is	 the	 easiest,	 least	 expensive	
procedure,	making	 it	 the	 clinician’s	first	 option.	
The	United	States	&	Europe	approved	the	various	
metered	dose	inhalers.	However,	work	is	currently	
ongoing	 to	 create	 electronic	 and	 digital	 pMDI	
devices	that	are	simple	&	affordable	for	patients	
to	use.	

CONCLUSION

	 With	 the	 aid	 of	 about	 100	 pertinent	
&	 representative	 pieces	 of	 research,	 this	 study	
has	 highlighted	 numerous	MDI’s	 for	 efficient	
drug	 administration.	 Dendrimers,	 polymeric	
nanocarriers	 &	 lipid-based	 nanocarriers	 are	
the	 most	 intriguing	 nanocarriers	 because	 of	
Physicochemical	characteristics	that	are	desirable	
and	adjustable.	
	 This	 review	concludes	 that	Liposomes,	
Polymeric	 nanoparticles	&	Dendrimers	 are	 all	
viable	options.	However,	more	research	is	required	
on	the	usage	of	renewable	biopolymers.	
	 However,	significant	future	research	must	
be	planned,	and	this	study	makes	the	call	for	that	
research.	
	 It	 has	 been	 demonstrated	 that	 the	
Pulmonary	Route	 of	Administration	 employing	
pMDI	 is	 efficient	 in	 the	 local	 and	 systemic	
distribution	of	medications,	and	biopharmaceuticals	
to	 treat	 a	 variety	 of	 respiratory	 disorders.	MDI	
has	 always	 been	 affordable,	 convenient,	 sturdy,	
portable,	 and	 small.	 Each	 gadget,	 however,	
has	 unique	 benefits	 and	 drawbacks.	Therefore,	
additional	research	is	required	to	find	solutions	to	
the	problems.	But	improving	patient	adherence	and	
digitization	are	the	primary	issues	that	need	to	be	
addressed.
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