Comparison of Plastome SNPs/INDELs among different Wheat (Triticum sp.) Cultivars

Shahira A. Hassoubah ${ }^{1}$, Reem M. Farsi ${ }^{1}$, Jehan S. Alrahimi ${ }^{1}$, Nada M. Nass ${ }^{1}$ and Ahmed Bahieldin ${ }^{1,2, *}$
${ }^{1}$ Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia. ${ }^{2}$ Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
http://dx.doi.org/10.13005/bbra/2807

(Received: 25 March 2020; accepted: 10 April 2020)

Abstract

Wheat is the most important cereal crop in the world as compared to other grain crops in terms of acreage and productivity. Based on next-generation sequencing data, we sequenced and assembled chloroplastid (cp) genomes of nine Egyptian wheat cultivars in which eight of them are hexaploid (Triticum aestivum, $2 \mathrm{n}=6 \mathrm{x}$) and one is tetraploid (T. turgidum sub sp. durum, $2 \mathrm{n}=4 \mathrm{x}$). Sequencing reads were first filtered in which all sequencing reads that mapped to mitochondrial (mt) genome were removed. Preliminary results indicated no intracultivar heteroplasmy for the different cultivars. Size of the resulted chloroplast wheat genome across different cultivars is $\mathbf{1 3 3 , 8 1 2} \mathbf{~ b p}$, which is less than the cp genome of "Chinese Spring" cultivar partially due to the presence of three large sequences in the later genome belonging to rice cp genome. Three new non-coding tRNA gene sequences were also found and function of one conserved ORF namely ycf5is shown. The protein-coding genes represent 67.26% of the total plastid genes. In the non-coding regions, a number of 5 tandem and 31 long repeats were found. Codon usage in the wheat cp genome has the same trend as that published for wheat mitochondrial genome. Assembled cp genomes after filtering out the gaps ($\leq 5 \mathrm{bp}$) generated in the nine cultivars were also used for SNPs and INDELs analyses. Across different cultivars, 564 SNPs and 160 INDELs were identified, of which 230 and 4 were in the protein-coding regions, respectively. Five and nine cultivar-specific SNPs and INDELs were found, respectively. One SNP, while none for INDELs, was found in the genic regions unique to one of the two inverted repeats (IRA) in the coding sequence of $n d h B$ gene. Two SNPs were non-synonymous substitutions in the two protein-coding genes rpoAand rpl16, while one was synonymous substitution in the protein coding gene rpl23. Three INDELs exist in rpl2 gene. The first is 12 -nucleotide that starts at nucleotide 4 of the gene and encodes for four amino acids. Two other INDELs starts from nucleotide 160 of the gene and are 19-nt apart. These two INDELs resulted in a frameshift of six amino acids, with a glycine amino acid in the middle that remained unchanged, then the default frame was restored. Results of dendrogram aligned with known relationships among cultivars. In conclusion, SNPs and INDELs analyses of wheat plastome were successfully used for detecting polymorphism among wheat cultivars.

Keywords: Hexaploid, tetraploid, frameshift, dendrogram, linage, polymorphism.

Chloroplast is a cell organelle that provides energy for plants and algae via the process of photosynthesis. Other biological processes occur in chloroplast including the production
of starch, lipids, amino acids, vitamins, and key pathways of sulfur and nitrogen metabolism. ${ }^{1}$ During evolution, chloroplasts were thought to arise from endosymbiosis between photosynthetic
bacterium and non-photosynthetic host. ${ }^{2}$ Plant plastid (cp) contains highly conserved genomes in terms of structure and gene content compared to those of mitochondrial and nuclear genomes. ${ }^{3,4}$ Individual chloroplast contains up to 1,600 copies of cp genome or plastome. ${ }^{5}$ In angiosperm, ex., monocots, cp DNA is circular and genome size ranges between $120-160 \mathrm{~kb}$ and featured with a quadripartite organization of two copies of inverted repeats (IRs) ($20-28 \mathrm{~kb}$), and a large ($80-90 \mathrm{~kb}$) and a small ($16-27 \mathrm{~kb}$) single-copy region, namely LSC and SSC, respectively. The cp genome mostly harbors ~ 4 rRNAs, ~ 30 tRNAs and ~ 80 proteincoding genes in addition to introns and intergenic spacers (IGS). ${ }^{6}$ Chloroplast genome is maternally inherited and studies of its structure, sequence variation, and diversity are useful in cytoplasmic breeding and non-inherited transgene insertions. ${ }^{5}$ Differences in gene content have been detected among angiosperm cpgenomes, ${ }^{7-9}$ however, no records were made at the plant species level.

In the past, the advent of Sanger sequencing method has enabled the elucidation of genetic information, however, it was hampered by technical details, costs, time and data resolution. The next-generation sequencing (NGS) technology has overcome these problems and revolutionized the science of genomics more appropriately. NGS revealed unlimited insights into genomes and transcriptomes of many species during the last few years.

Wheat is among the most widely cultivated field crops worldwide. Cultivated wheats can be either hexaploid (T. aestivum, AABBDD, $2 \mathrm{n}=6 \mathrm{x}$) or tetraploid (Triticum durum, AABB, $2 \mathrm{n}=4 \mathrm{x}$). Complexity of wheat nuclear genome in terms of genome types and size makes it difficult to be sequenced and assembled. The draft genome of the A-genome progenitor (e.g., T. urartu, AA) has been assembled and assigned as a reference genome for further comparison with polyploidgenomes. ${ }^{10}$

A number of studies used the whole genome approach in order to detect SNPs and INDELs in the mitochondrial (mt) and cpgenomes. ${ }^{5,11-13}$ Nonetheless, utilization of SNP/ INDELs of plastome in detecting genetic distances is a challenging task. With the possibility that half of the cp genome has analogue sequences in mitochondrial genome and due to the incidence of intra-varietal heteroplasmy, drawing dendrograms
to describe the relationships among cultivars based on organellar SNPs/INDELs is a challenging task. Although heteroplasmy has been reported as a rare event in cpgenomes, ${ }^{14}$ earlier studies indicated higher probabilities. ${ }^{15,16}$ We speculate that polymorphism due to partial genome transfer and heteroplasmy should be removed before we approach to detect SNPs/INDELs among genotypes.

The available reference cp genome of the hexaploid "Chinese Spring" cultivar was previously sequenced based on the constructed genomic library and the assembled clone-contigs. ${ }^{3}$ In the present study, we have detected the structure and gene content of wheat plastome based on the new era of NGS with nine wheat cultivars. Eight of these cultivars are hexaploids and one is a tetraploid. We also attempted to detect genetic distance within hexaploid species or between the two wheat species based on SNPs/INDELsofcp genomes.

METHODS

Sampling and DNA Isolation

Nucleic acids were isolated from leaf tissues ($\sim 1 \mathrm{~g}$) of 14-day-old etiolated seedlings of nine wheat cultivars (Table 1)using the modified procedure of Gawel and Jarret ${ }^{17}$. DNAs were treated with RNase A ($10 \mathrm{mg} / \mathrm{ml}$) and incubated at $37^{\circ} \mathrm{C}$ for 30 min to remove RNA contaminants. Then, DNAs were shipped in liquid nitrogen to BGI, China for deep sequencing using the Illumina HiSeq 2000 platform.

Mapping of reads to reference cp genome

Between 101.34 to 195.28 million $100-\mathrm{bp}$ paired-end reads were generated for each cultivarfrom 500-bp insert library. Adapter sequences in the raw data were deleted, and reads with 50% low quality bases (quality value d " 5) or more were discarded. The remaining sequences of different cultivars were first mappedto the published wheat mtgenome (acc. no. AP008982) before mapping to cpgenome (acc. no. AB042240) using CLC Genomics Workbench (version 3.0, http://www.clcbio.com/user manuals). All cp reads that aligned to mt genome were removed before cp genome assembly.

Sequence Annotation

Annotation was carried out by mapping
cp genome sequences with BLAST hits (identity 90% and overlap $90 \%)^{18}$ to known plastid genes. Then, sequences were tested for consistency of the ORFs using NCBI online tool of the ORF finder (http://www.ncbi.nlm.nih.gov/projects/gorf/, the standard genetic code was applied). Gene and exon boundaries were determined by alignment of homologous genes from wheat and several other common plastid angiosperm genomes. The tRNA genes were identified by using BLAST search tools, ${ }^{18}$ and the tRNAscan-SE program (version 1.4 with default parameters). ${ }^{19}$ Repetitive sequences were identified using the REPuter (version 2.74; length e" 50 bp ; mismatch d" 3 mismatches). ${ }^{20}$ Then, information on tandem repeats were identified using a tandem repeat finder (http://tandem.bu. edu/trf/trf.html,Benson ${ }^{21}$).

Identification of SNP and INDELs and phylogenetic analyses

As extra step of filtering was made by the removal of sequences in the reference cp genome corresponding to the gaps of e" 5 bp in all the nine wheat cultivars to avoid bias in the resulted INDELs analysis. Gaps in the cp genome of the nine cultivars that generated by the reference cp genome with less than 5 bp were considered insertions.However, gaps generated during alignment only in the reference cp genome were all considered as deletions. The mapping results after the third filtering were, then, used for SNPs/INDELs identificationbased on a Bayesian algorithm according to the BioScope software (version 1.3) guideused as visual double-check. Only SNPs/INDELs with a read depth ofe" 30, mapping quality of e" 30 and $\mathrm{SNPs} /$ INDELs quality of e" 20 were retained.

Data matrices of different cultivar pairs were entered into TFPGA (version 1.3) and analyzed using qualitative routine and dissimilarity coefficients were utilized in drawingdendrogram using unweighted pair group method with arithmetic average (UPGMA) and Neighbor Joining (NJ) routine using NTSYSpc (version 2.10, Exeter software).The bootstrap value was set to 100. All other parameters are set as default.

RESULTS AND DISCUSSION

Mapping of reads to reference genome

The number of reads mapped to the cp
genomes of the nine wheat cultivars ranged between 281,499-2,169,718 with CG representing 38.31\% and mapped reads average representing 1.1% of the total reads (Table 2, Supplementary Files 1-9). Mapping of the reads to the reference wheat cp genome (acc. no. AB042240,Ogiharaetal., ${ }^{3}$) resulted in 100% coverage of the genome. Removal of reads aligned to the wheat mt genome reduced the number of cp reads to $219,147-1,440,201$, which represents an average of 0.73% of the total reads with mean filtered coverage of 644-1,450 (Table 2). As all reads that mapped to mitochondrial genome were eliminated, we confidently declare that intra-cultivar heteroplasmy for the different cultivars does not exist in alignment with the results incp genomes of many other angiosperms, ex., B. hygrometrica, in which no intraSNPs were found. ${ }^{22}$ The intraSNPs have been demonstrated to be present in both cp and mt genomes in rice. ${ }^{23}$ Additionally, in our earlier study on date palm cp genome following the same approach of removal of reads mapped to mt genome, we detected a number of intraSNPs that reflects plastid heteroplasmy. ${ }^{24}$ This data confirmed that date palm cp genomes are heteroplasmic and scoped the light on the necessity to be cautious when analyzing SNP from data generated from next generation sequencing of total genomic DNA of other crop plants.

Comparative analysis of plastomes of several angiosperms

Although the nuclear wheat genome ($\sim 16-17 \mathrm{~Gb}$) is about 3-35 fold larger than other cereals, like rice $(0.43 \mathrm{~Gb})$ and barley $(5.3 \mathrm{~Gb})$, the plastid genome $(133,812 \mathrm{bp})$ is the smallest among angiosperms including cereals, after Marchantiapolymorpha (121,024 bp), and the total number of gene types (97), either protein coding, tRNA or rRNA genes, is the least among angiosperms (Table 3). The detailed gene content of wheat plastome is shown in Table 4. The largest known cp genome among angiosperms is that of Chara vulgaris ($184,933 \mathrm{bp}$). ${ }^{22}$ Plastid genome of the latter species also has the highest $\mathrm{AT} \%$ (73.8\%) and repeats \% (3.162\%) among angiosperms. The coding percentage in wheat cp genome is intermediate among angiosperms; date palm cp genome has the highest (99.39%). The number of tandem repeats of wheat cp genome is the highest (5) among published cpgenomes of

Fig. 1. Number of tandem and long repeats in plastomes of several angiosperms

Fig. 2. Plastome of wheat cultivar G168 indicating the gene content. The arrow indicate three non-coding genes, e.g., trnI, $\operatorname{trn} T$ and trnfM missing in the plastome of the reference wheat cp genome(acc. no. AB042240)

Fig. 3. Alignment of the rpl2-encoded amino acids sequenceof the cultivar G168 (KJ592713) to that of Chinese Spring cultivar(AB042240) indicating the changes due to SNPs (14 amino aacids) and INDELs (3).A long INDEL (LNNT) of 12 nucleotides is located right after the first amino acid (M). The other two INDELs are one-nucleotide each that changed the sequence of six amino acids, three amino acids each, with a G in the middle. Position of these six amino acids is indicated in red
other angiosperm. However, cp genome of Chara vulgaris possesses the highest number of long repeats (120) among angiosperms (Figure 1).

Plastome structure

Plastid nucleotide sequence of G168, as a model, was submitted to the NCBI and received the accession no. KJ592713. Plastome

Fig. 4. Phylogenetic analysis using chloroplast sequences from nine wheat cultivars and the reference chloroplastid genome (acc. no. AB042240)with neighbor joining using routine using NTSYSpc

Table 1. Wheat cultivars examined along with their geographic locations, ploidy levels and pedigrees

No. Name	Abbrev.	Geographic location	Ploidy level	Pedigree	
1	Giza 168	GZ168	Delta, Egypt	Hexaploid	MRL/BUC//SERT 2
Shandweel	SWL	Upper Egypt	Hexaploid	SITE//MO/4/NAC/TH.AC//3*PVN/3/MRL/BUC	
3	Gemiza 10	GMZ10	Delta, Egypt	Hexaploid	MAYA74"S"/ON//1160-147/3/BB/GLL/4/
					CHAT"S"/5/CROW"S"
4	Sakha 95	SKH95	Delta, Egypt	Hexaploid	N/A
5	Sakha 94	SKH94	Delta, Egypt	Hexaploid	OPATA/RAYON// KAUZ"S"
6	Misr 2	MSR2	Sina, Egypt	Hexaploid	KAUZ"S"/BAV92
7	Sids 13	SDS13	Delta, Egypt	Hexaploid	KAUZ"S"/TSI//TSI/SNB"S"
8	Gemiza 9	GMZ9	Delta, Egypt Hexaploid	ALD"S"/HUAC"S"//CMH74A.630/SX 9	BeniSweif4
		BSF4	Upper Egypt	Tetraploid	AUSL/5/CANDO/4/BY*2/TACE//II27655/3/
				TME/ZB/W*2	

Table 2. Statistics of DNA numerical data analysis for the nine wheat cultivars aligned to the chloroplast reference genome (acc. no. AB042240)

No.	Total read no.	GC $(\%)$	No. reads mapped	No. filtered reads	Coverage	Filtered coverage	\% reads mapped	$\%$ filtered reads
GZ168	$107,565,480$	38.31	$1,195,172$	803,643	1,229	799	1.11	0.75
SWL	$121,447,620$	38.31	$1,349,418$	852,158	1,394	902	1.11	0.70
GMZ10	$25,334,910$	38.31	281,499	219,147	864	644	1.11	0.87
SKH95	$58,380,660$	38.31	648,674	423,249	1,345	866	1.11	0.73
SKH94	$110,930,580$	38.31	$1,232,562$	824,490	1,279	824	1.11	0.74
MSR2	$153,813,240$	38.31	$1,709,036$	$1,136,796$	1,788	1,142	1.11	0.74
SDS13	$121,444,110$	38.31	$1,349,379$	895,590	1,368	902	1.11	0.74
GMZ9	$195,274,620$	38.31	$2,169,718$	$1,440,201$	2,243	1,450	1.11	0.74
BSF4	$161,609,580$	38.31	$1,795,662$	$1,074,662$	1,892	1,202	1.11	0.67

of the wheat cultivar along with gene content were generated earlier by our group. ${ }^{25}$ Our results indicateda number of three new non-coding genes, e.g.,trnI, $\operatorname{trn} T$ and $\operatorname{trnf} M$ (Figure 2) located in the LSC region; of which the first two areshownin a cluster. Additionally, function of one out of three conserved ORFs, namely $y c f 5$ was assigned after annotation (Figure 2). The latter gene, also called $\operatorname{ccs} A$, functions as a cytochrome c-type biogenesis protein required for heme attachment to chloroplast cytochromes. ${ }^{26}$ Functions of the two other conserved ORFs, namely $y c f 6$ and $y c f 9$ were also deciphered. ${ }^{22}$ Respectively, they are named pbsZand pet N genes. The first functions in photosystem II, while the second functions as a cytochrome in the generation of ATP via electron transport.

A total of 19,770 codons representing the coding capacity of all protein-coding genes of wheat cp genome were scored (Table 5). Among them, as high as 2,118 (10.71%) codons encode for leucine, while as low as 214 (1.08%) codons encode for cysteine. Yang et al. ${ }^{5}$ indicated that isoleucine and cysteine are the most and least amino acids in plastid genome in terms of number of codons in date palm cp genome, respectively, (see Table 1, Yang et al. ${ }^{5}$). The most frequent codon (825) was scored for AUU encoding isoleucine.

Similar conclusion was reached by Yang et al. ${ }^{5}$ in their study on date palm cp genome. Our results also indicated that nucleotide frequencies vary at different codon positions. At the first position, "A" nucleotide is found the most frequent nucleotide (29.59%), followed by "G" (28.55\%). The nucleotide "C" is the least (18.66\%) at the first position. This indicates that purine is favored at the first position.At the second position, "U" is found as the most frequent nucleotide (32.70%), followed by "A" (27.61\%). The nucleotide "G" scores the least (18.55%). At the third position, "U" also is the most frequent nucleotide (37.64\%), followed by "A" (32.57\%). The nucleotide " C " is the least frequent nucleotide (14.26%). These results indicate that " U " is favored for change at the second and third positions of the codon. Similar tendency of resultswasfound when studying codon usage in mitochondrialgenome of wheat. ${ }^{11}$ This indicates that AT-rich genes in cp genome might be less conserved that CG-rich genes. Date palm also showed the same trend of results, except that nucleotide "C", not " G ", is the least frequent at the first position of the codon in its plastide genome (Calculated from data in Table 1 of Yang et al., ${ }^{5}$). The results of the relative synonymous codon usage (RSCU) indicated that UUA codon coding for leucine is the most common(2.07) compared to

Table 3. Comparative analysis of genomic features among 12 chloroplast genomes of angiosperms

Species	Size (bp)	$\begin{aligned} & \text { AT } \\ & \text { (\%) } \end{aligned}$	No. genes*	Coding sequence (\%)	Repeats (\%)
Chara vulgaris	184,933	73.8	148/105/37/6	62.26	3.162
Marchantiapolymorpha	121,024	71.2	134/89/37/8	79.74	0.766
Cycastaitungensis	163,403	60.5	169/122/38/8	74.13	0.785
Arabidopsis thaliana	154,478	63.7	129/85/37/7	72.43	1.577
Nicotianasylvestris	155,941	62.2	149/101/37/8	74.99	0.878
Vitisvinifera	160,928	62.6	138/84/45/8	64.17	1.128
Phoenix dactylifera	158,462	62.8	149/95/44/8	99.39	2.729
Bambusaemeiensis	139,493	61.1	131/84/39/8	64.74	1.481
Oryza sativa/indicagroup	134,496	61.0	65/64/27/6	42.89	1.333
Sorghum bicolor	140,754	61.5	140/84/48/8	58.63	1.468
Zea mays	140,384	61.5	158/111/38/8	69.36	1.919
Triticumaestivum	133,812**	61.7	97/66***/27****/4	67.26	1.651
* Total/protein coding/tRNA/rRNA ** This size was corrected (Bahieldin et al. 2014), which is 728 bp shorter than the published wheat plastome(Ogihara et al. 2000) *** A number of 74 protein-coding genes and two unidentified ORFs (ycf3 \& ycf4) **** A number of 30 tRNA genes plus three new sequences detected in the present study					

the other codons of leucine or for any other amino acids (Table 5). This indicates that cp genes display a non-random usage of synonymous codons. The results also indicated that UAA is the most frequently-used stop codon (54.9\%). A number of 28 , out of the sense 61 codons, covering all the 20 amino acids have tRNAs existed in wheat plastome. Interestingly, most of the tRNAs are specific for less frequent codons. Therefore, the phenomenon of codon preference in wheat plastomeis not only explained by the frequency by which a certain codon of a given amino acid exists, but also by the availability of the cognate tRNAof such a codon (Table 5).

SNPs and INDELs analyses and cultivars relationships

Across the different Egyptian cultivars, 564 SNPs and 160 INDELs were identified in the study, of which 230 and 4 are in the protein-coding regions, respectively (Table 6). The number of monomorphic SNPs and INDELs are 553 and 154 , respectively. A number of 212 SNPs were found in the long inverted repeat (IR) regions, of
which 104 were found in the IRA and 108 were found in theIRbregion. One SNP, while none for INDELs, was found in the genic regions unique to one of the two inverted repeats (IRA) in the coding sequence of $n d h B$ gene. The similarity of SNPs patterns in both IR regions is due to the fact that cp genome is conserved. However, there is a possibility that one single read within these regions might be mapped to either region. This possibility reduces the chance to detect the different patterns, if existed, of the IR region. Therefore, SNPs analysis using next generation sequencing of total genomic DNA should be taken cautiously. It is likely that the duplication of the IR region took place way after the occurrence of point mutations during evolution. Numbers of inter-cultivar polymorphic and cultivar-specific SNPs were nine and five, respectively (Table 6). The latter number was scored only in the intergenic spacers (IGS) region for cultivar BSF4. Among the polymorphic SNPs, six were found in the IGS regions, while only one was found in the introns (IN) of atpF gene and two SNPs were found in the GN regions of proA and

Table 4. The gene content across the nine assembled Triticumaestivum chloroplast genomes

Category	Gene name	No.
Ribosomal RNA	$\operatorname{rrn23S}(x 2), \operatorname{rrn} 16 S(x 2), \operatorname{rrn} 5 S(x 2), \operatorname{rrn} 4.5 S(x 2)$	8
Transfer RNAs	$\operatorname{trn} A-U G C(x 2), \operatorname{trn} C-G C A, \operatorname{trnD-GTC}, \operatorname{trnE-TTC}$, trnF-GAA, trnfM-CAT(x2), trnG-GCC, trnG-TCC, $\operatorname{trnH}-G T G(x 2), \operatorname{trnI}-G A T(x 2), \operatorname{trnK}-T T T, \operatorname{trnL}-C A A(x 2)$, $\operatorname{trnL}-T A A, \operatorname{trnL}-T A G, \operatorname{trn} M-C A T, \operatorname{trnN}-G T T(x 2)$, trnP-TGG, trnQ-TTG, trnR-ACG(x2), trnR-TCT, $\operatorname{trnS} S C T, \operatorname{trn} S-G G A, \operatorname{trn} T-G G T, \operatorname{trn} T-T G T$, $\operatorname{trnV}-G A C(x 2), \operatorname{trn} W-C C A, \operatorname{trn} Y-G T A$	35
Photosystem I	psaA, psab, psaC, psaI, psaJ	5
Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ (ycf9)	15
Cytochrome b/f complex	petA, petB, petD, petG, petL, petN (ycf6)	6
ATP synthase	atpA, atpB, atpE, atpF, atpH, atpI	6
NADH dehydrogenase	$n d h A, n d h B(x 2), n d h C, n d h D, n d h E, n d h F, n d h G$, ndhH, ndhI, ndhJ, ndhK	12
RubisCO large subunit	$r b c L$	1
RNA polymerase	rpoA, rpoB, rpoC1, rpoC2	4
Ribosomal proteins (SSU)	rps2, rps3, rps4, rps7(x2), rps8, rps11, rps12(x2), rps14, rps15(x2), rps16, rps18, rps19(x2)	16
Ribosomal proteins (LSU)	$\begin{aligned} & \text { rpl2(x2), rpl14, rpl16, rpl20, rpl22, rpl23(x2), } \\ & \text { rpl32, rpl33, rpl36 } \end{aligned}$	11
Other genes	clpP, matK, ccsA (ycf5), infA, cemA	5
hypothetical chloroplast reading frames	ycf3, ycf4	2
Total no.	116	

rpl16 genes. Numbers of 15 and ninepolymorphic and cultivar-specific INDELs were also found of which 10 and eight INDELs, respectively, are located in the IGS regions, while fivepolymorphic and one cultivar-specific INDEL, respectively, are located in the IN regions of the rpll 6 gene.

The highest number of SNPs in the protein coding regions was scored for gene $n d h B$ (31 and 30 in the IRA and IRB regions, respectively), followed by rpl2 (18 in each IR region), then matK (34) and $p s b C$ (25). One long INDEL of 12 nucleotide exists in the rpl2 gene and starts at nucleotide 4 of the gene (Figure 3). Nucleotide sequence of this

INDEL encodes for four amino acids (LNNT). Two other INDELsthat are 19-nt apart starting from nucleotide 160 of the gene were detected in the rpl2 gene (Figure 3). The first is an inserted nucleotide in the nine wheat cultivars, while the second was a deleted nucleotide compared to Chinese Spring cultivar. The latter two INDELs resulted in a frameshift of six amino acids, with a glycine amino acid in the middle remains unchanged, then default frame wasregained(Figure 3). We concluded that $r p l 2$ gene in the reference genome is $12-n t$ shorter than that of the Egyptian cultivars. It is unlikely that the change in these amino acids has posed

Table 5. Codon usage and codon-anticodon recognition pattern for tRNA in nine assembled wheat chloroplast genomes

Amino acid	Codon	No.	RSCU*	tRNA	Amino acid	Codon	No.	RSCU	tRNA
Phe	UUU	730	1.33		Ser	UCU	402	1.71	
	UUC	368	0.67	trnF-GAA		UCC	255	1.08	trnS-GGA
Leu	UUA	731	2.07	trnL-TAA		UCA	242	1.03	trS-TGA
	UUG	385	1.09	trnL-CAA		UCG	116	0.49	
	CUU	443	1.26		Pro	CCU	343	1.61	trnP-TGG
	CUC	145	0.41			CCC	189	0.89	
	CUA	308	0.87	trnL-TAG		CCA	225	1.06	
	CUG	106	0.30			CCG	96	0.45	
Ile	AUU	825	1.52		Thr	ACU	457	1.71	
	AUC	297	0.55	trnI-GAT		ACC	184	0.69	trnT-GGT
	AUA	502	0.93			ACA	305	1.14	trnT-TGT
Met	AUG	456	1.00	trnfM-CAT		ACG	121	0.45	
Val	GUU	425	1.45		Ala	GCU	548	1.76	
	GUC	144	0.49	trnV-GAC		GCC	185	0.60	
	GUA	450	1.54	trnV-TAC		GCA	378	1.22	trnA-TGC
	GUG	150	0.51			GCG	133	0.43	
Tyr	UAU	567	1.58		Cys	UGU	164	1.53	
	UAC	152	0.42	trnY-GTA		UGC	50	0.47	trnC-GCA
Stop	UAA	45	1.65		Stop	UGA	17	0.62	
Stop	UAG	20	0.73		Trp	UGG	343	1.00	trnW-CCA
His	CAU	334	1.49		Arg	CGU	282	1.39	trnR-ACG
	CAC	115	0.51	trnH-GTG		CGC	110	0.54	
Gln	CAA	513	1.56	trnQ-TTG		CGA	252	1.24	
	CAG	144	0.44			CGG	84	0.42	
Asn	AAU	595	1.50		Ser	AGU	290	1.23	
	AAC	201	0.51	trnN-GTT		AGC	107	0.46	trnS-GCT
Lys	AAA	745	1.46	trnK-TTT	Arg	AGA	362	1.79	trnR-TCT
	AAG	278	0.54			AGG	125	0.62	
Asp	GAU	556	1.56		Gly	GGU	480	1.30	trnG
	GAC	155	0.44	trnD-GTC		GGC	163	0.44	trnG-GCC
	GAA	779	1.50	trnE-TTC		GGA	584	1.58	trnG-TCC
	GAG	259	0.50			GGG	255	0.69	

[^0]Table 6. SNPs and INDELs within plastid genomes of the nine Egyptian wheat cultivars as sorted by position and region of the genome. Plastid genome of Chinese Spring cultivar was used as the reference genome (acc. no. AB042240).GN refers to protein-coding genic regions, IN refers to intron regions and IGS refers to intergenic spacer regions, S refers to synonymous substitution, NS refers to non-synonymous.Letters in INDELs refer to insertions and (-) refers to deletions.Red blocks refer to SNPs in the protein-coding regions. Green blocks indicate SNPs unique to one of the two inverted repeats (IR) regions. Blue block indicates the unique SNP to one IR (IRa) region.Orange blocks indicate INDELs within the IR region that showed similar patterns in the two regions.

No.	Position	1-9 ${ }^{1}$	REF	Region	Gene	No.	Position	1-9	REF	Region	Gene
SNPs											
1	1160	T	A	IGS	-	283	11335	T	C	GN	psbC
2	1186	T	C	IGS	-	284	11374	A	T	GN	psbC
3	1223	A	G	IGS	-	285	11395	A	G	GN	psbC
4	1275	T	C	IGS	-	286	14971	$\mathrm{G}(1,2)^{2}$	C	IGS	-
5	1282	A	C	IGS	-	287	29930	T (4,5)	C	IGS	-
6	1283	A	G	IGS	-	288	32015	A (9)	G	IGS	-
7	1285	G	C	IGS	-	289	32020	C (9)	G	IGS	-
8	1287	T	G	IGS	-	290	32025	G (9)	A	IGS	-
9	1289	A	T	IGS	-	291	32041	A (9)	G	IGS	-
10	1301	T	C	IGS	-	292	32052	C (4,5)	G	IGS	-
11	1305	T	A	IGS	-	293	32077	T (9)	A	IGS	-
12	1311	A	T	IGS	-	294	33103	T (6,7)	C	IGS	-
13	1322	T	A	IGS	-	295	33518	T (6,7)	C	IN	atpF
14	1325	T	A	IGS	-	296	60528	C	T	GN	petA
15	1350	C	G	IGS	-	297	60541	T	A	GN	petA
16	1354	G	A	IGS	-	298	60542	T	A	GN	petA
17	1355	T	A	IGS	-	299	60544	T	G	GN	petA
18	1357	A	C	IGS	-	300	60547	T	C	GN	petA
19	1364	T	C	IGS	-	301	60551	C	A	GN	petA
20	1365	T	A	IGS	-	302	60578	T	G	GN	petA
21	1369	G	T	IGS	-	303	60580	G	T	GN	petA
22	1371	G	C	IGS	-	304	60582	T	C	GN	petA
23	1374	T	C	IGS	-	305	60583	C	T	GN	petA
24	1440	C	A	IN	trnK	306	60584	T	C	GN	petA
25	1464	T	A	IN	trnk	307	60585	C	A	GN	petA
26	1507	T	A	IN	trnK	308	60586	A	T	GN	petA
27	1525	C	G	IN	trnK	309	60587	A	C	GN	petA
28	1527	A	T	IN	trnK	310	60590	A	C	GN	petA
29	1539	A	G	IN	trnK	311	60909	T	C	IGS	-
30	1566	A	G	IN	trnK	312	60912	T	C	IGS	-
31	1584	C	T	IN	trnK	313	60981	T	A	IGS	-
32	1588	T	A	IN	trnK	314	61022	G	C	IGS	-
33	1589	C	A	IN	trnK	315	61088	A	T	IGS	-
34	1599	A	G	IN	trnK	316	61129	A	T	IGS	-
35	1602	A	C	IN	trnK	317	61140	G	T	IGS	-
36	1604	A	G	IN	trnK	318	61141	A (1,2)	C	IGS	-
37	1621	A	G	IN	trnK	319	61167	T	G	IGS	-
38	1625	A	C	IN	trnK	320	6117	T	A	IGS	-
39	1627	A	G	IN	trnK	321	61200	T	C	IGS	-
40	1628	G	T	IN	trnK	322	61239	T	C	IGS	-
41	1629	A	G	IN	trnK	323	61544	C	A	GN	psbJ
42	1638	T	A	IN	trnK	324	61573	C	A	GN	$p s b J$
43	1639	T	C	IN	trnK	325	61722	A	C	GN	$p s b L$

44	1656	C	T	IN	trnK	326	61736	A	G	GN	psbL
45	1658	C	A	IN	trnK	327	61833	A	G	GN	psbF
46	1663	C	T	IN	trnK	328	61834	A	G	GN	psbF
47	1664	T	A	IN	trnK	329	61931	A	G	GN	psbF
48	1669	C	A	IN	trnK	330	62074	G	A	GN	psbE
49	1673	A	G	IN	trnK	331	62121	A	T	GN	psbE
50	1677	C	T	IN	trnK	332	73770	G	A	GN	petD
51	1680	C	T	IN	trnK	333	74736	A (4,5)	G	GN	proA
52	1699	G	A	GN	matK	334	77436	T	G	GN	rpll4
53	1702	G	C	GN	matK	335	77693	T (4,5)	C	GN	rpll6
54	1708	G	A	GN	matK	336	81245	A	T	GN	rpl2
55	1720	T	G	GN	matK	337	81248	A	T	GN	rpl2
56	1722	T	G	GN	matK	338	81255	A	T	GN	rpl2
57	1748	G	C	GN	matK	339	81274	A	G	GN	rpl2
58	1753	T	C	GN	matK	340	81277	A	T	GN	rpl2
59	1759	A	C	GN	matK	341	81286	A	T	GN	rpl2
60	1761	A	G	GN	matK	342	81292	A	T	GN	rpl2
61	1771	A	G	GN	matK	343	81297	A	C	GN	rpl2
62	1772	A	T	GN	matK	344	81305	A	G	GN	rpl2
63	1773	G	A	GN	matK	345	81327	G	A	GN	rpl2
64	1785	T	C	GN	matK	346	81328	A	T	GN	rpl2
65	1817	A	C	GN	matK	347	81344	A	T	GN	rpl2
66	1838	G	A	GN	matK	348	81345	A	T	GN	rpl2
67	1851	G	A	GN	matK	349	81348	A	T	GN	rpl2
68	1863	T	C	GN	matK	350	81395	A	T	GN	rpl2
69	1886	C	G	GN	matK	351	81402	A	T	GN	rpl2
70	1889	G	C	GN	matK	352	82408	A	T	GN	rpl2
71	1943	C	T	GN	matK	353	81420	G	A	GN	rpl2
72	1944	G	T	GN	matK	354	81446	A	G	IN	rpl2
73	1945	T	C	GN	matK	355	81482	A	T	IN	rpl2
74	1951	C	T	GN	matK	356	81483	A	T	IN	rpl2
75	1963	A	G	GN	matK	357	82445	T	G	GN	rpl23
76	1999	T	C	GN	matK	358	82324	C	A	GN	rpl23
77	2111	G	T	GN	matK	359	82596	G	T	GN	rpl23
78	2610	G	T	GN	matK	360	82599	C	T	GN	rpl23
79	2611	A	G	GN	matK	361	82608	T	G	GN	rpl23
80	2616	A	T	GN	matK	362	82611	T	C	GN	rpl23
81	2673	A	G	GN	matK	363	82623	T	C	GN	rpl23
82	2674	G	A	GN	matK	364	82629	A	G	GN	rpl23
83	2692	A	G	GN	matK	365	82647	A	C	GN	rpl23
84	3127	G	A	GN	matK	366	82656	C	T	GN	rpl23
85	3128	T	G	GN	matK	367	83205	A	C	IGS	-
86	3335	T	C	GN	trnK	368	83324	A	G	IGS	-
87	3340	A	G	GN	trnK	369	83346	G	A	IGS	-
88	3347	G	A	IN	trnK	370	83443	G	A	IGS	-
89	3362	A	G	IN	trnK	371	83448	A	G	IGS	-
90	3373	T	C	IN	trnK	372	83474	T	G	IGS	-
91	3386	C	T	IN	trnK	373	83481	C	T	IGS	-
92	3393	A	T	IN	trnK	374	83529	G	A	IGS	-
93	3413	C	A	IN	trnK	375	83566	C	T	IGS	-
94	3414	A	C	IN	trnK	376	83575	A	C	IGS	-
95	3419	A	G	IN	trnK	377	83577	G	T	IGS	-
96	3434	G	A	IN	trnK	378	83657	A	G	IGS	-
97	3436	T	C	IN	trnK	379	83755	A	G	IGS	-
98	3437	T	C	IN	trnK	380	83791	C	G	IGS	-
99	3457	C	T	IN	trnK	381	83801	G	T	IGS	-

100	3474	A	G	IN	trnK	382	83991	C	T	IGS	-
101	3481	C	T	IN	trnK	383	84260	A	G	IGS	-
102	3530	C	T	IN	trnK	384	84354	A	G	IGS	-
103	3543	T	A	IN	trnK	385	84365	T	G	IGS	-
104	3585	A	C	IN	trnK	386	84367	C	T	IGS	-
105	3588	G	A	IN	trnK	387	84368	T	C	IGS	-
106	3593	C	T	IN	trnK	388	84449	A	C	IGS	-
107	3611	A	G	IN	trnK	389	84463	A	G	IGS	-
108	3622	C	T	IN	trnK	390	84464	G	A	IGS	-
109	3777	A	C	IN	trnK	391	84504	C	G	IGS	-
110	4339	T	C	IGS	-	392	84545	A	C	IGS	-
111	4345	A	T	IGS	-	393	84555	A	G	IGS	-
112	4606	C	A	GN	rps 16	394	84594	C	T	GN	trnL
113	4618	C	T	GN	rps 16	395	84658	G	A	IGS	-
114	4694	T	C	GN	rps 16	396	84938	A	C	IGS	-
115	4889	T	G	IN	rps 16	397	85090	T	C	IGS	-
116	4891	A	G	IN	rps 16	398	85918	A	G	GN	$n d h B$
117	4922	A	C	IN	rps 16	399	85921	G	A	GN	$n d h B$
118	4930	G	T	IN	rps 16	400	85922	A	G	GN	$n d h B$
119	4949	A	G	IN	rps 16	401	85924	T	A	GN	$n d h B$
120	4954	C	G	IN	rps 16	402	85925	A	T	GN	$n d h B$
121	4955	G	A	IN	rps 16	403	85946	A	G	GN	$n d h B$
122	4959	G	A	IN	rps 16	404	85972	C	T	GN	$n d h B$
123	4960	C	A	IN	rps 16	405	85977	A	T	GN	$n d h B$
124	5147	A	T	IN	rps 16	406	85990	C	A	GN	$n d h B$
125	5317	G	T	IN	rps 16	407	85991	T	G	GN	$n d h B$
126	5325	C	T	IN	rps 16	408	85992	G	T	GN	$n d h B$
127	5359	A	G	IN	rps 16	409	85994	A	G	GN	$n d h B$
128	5364	C	A	IN	rps 16	410	85995	G	A	GN	$n d h B$
129	5462	G	T	IN	rps 16	411	85996	T	G	GN	$n d h B$
130	5492	C	A	IN	rps 16	412	85997	A	T	GN	$n d h B$
131	5498	T	C	IN	rps 16	413	85998	G	A	GN	$n d h B$
132	5506	A	G	IN	rps 16	414	86017	G	A	IN	$n d h B$
133	5520	G	A	IN	rps 16	415	86018	A	G	IN	$n d h B$
134	5561	A	G	IN	rps16	416	86019	G	A	IN	$n d h B$
135	5587	A	G	IN	rps 16	417	86021	A	G	IN	$n d h B$
136	5641	C	A	GN	rps 16	418	86522	A	T	IN	$n d h B$
137	5677	G	T	IGS	-	419	86671	A	T	IN	$n d h B$
138	5683	A	G	IGS	-	420	86804	T	G	GN	$n d h B$
139	5722	G	A	IGS	-	421	86838	G	T	GN	$n d h B$
140	5727	A	C	IGS	-	422	86927	T	C	GN	$n d h B$
141	5746	A	C	IGS	-	423	86951	T	A	GN	$n d h B$
142	5771	C	A	IGS	-	424	86954	T	A	GN	$n d h B$
143	5778	G	A	IGS	-	425	86957	T	A	GN	$n d h B$
144	5789	G	T	IGS	-	426	86962	T	C	GN	$n d h B$
145	5802	C	G	IGS	-	327	86984	T	C	GN	$n d h B$
146	5805	G	A	IGS	-	428	87296	T	A	GN	$n d h B$
147	5809	C	A	IGS	-	429	87337	T	A	GN	$n d h B$
148	5816	C	A	IGS	-	430	87353	T	A	GN	$n d h B$
149	5821	T	G	IGS	-	431	87390	T	C	GN	$n d h B$
150	5867	C	T	IGS	-	432	87435	T	C	GN	$n d h B$
151	5874	T	C	IGS	-	433	87447	T	A	GN	$n d h B$
152	5881	G	A	IGS	-	434	87521	A	G	IGS	-
153	5882	A	G	IGS	-	435	87543	T	A	IGS	-
154	5883	C	G	IGS	-	436	87620	T	C	IGS	-
155	5886	C	A	IGS	-	437	87645	T	C	IGS	-

156	5904	A	G	IGS	-	438	87761	C	T	IGS	-
157	5916	C	A	IGS	-	439	87782	A	C	IGS	-
158	5918	T	G	IGS	-	440	87877	T	C	GN	$r p s 7$
159	5919	T	G	IGS	-	441	94621	A	C	IN	trnA
160	5928	C	T	IGS	-	442	97095	C	T	IGS	-
161	5936	G	A	IGS	-	443	101188	C	G	IGS	-
162	5939	T	G	IGS	-	444	101241	C	A	GN	$n d h F$
163	5941	G	A	IGS	-	445	101328	C	G	GN	$n d h F$
164	5968	G	A	IGS	-	446	101355	C	A	GN	$n d h F$
165	5972	G	T	IGS	-	447	101606	C	G	GN	$n d h F$
166	5981	G	A	IGS	-	448	102640	G	T	GN	$n d h F$
167	5993	C	T	IGS	-	449	105635	T	C	GN	$\operatorname{ccs} A$
168	5994	T	C	IGS	-	450	105859	T	G	GN	$\operatorname{ccs} A$
169	5998	T	C	IGS	-	451	105865	T	C	GN	$\operatorname{ccs} A$
170	6018	A	C	IGS	-	452	105868	T	C	GN	$\operatorname{ccs} A$
171	6052	C	T	IGS	-	453	105869	T	C	GN	$\operatorname{ccs} A$
172	6056	A	C	IGS	-	454	105876	T	C	GN	$\operatorname{ccs} A$
173	6058	T	A	IGS	-	455	106112	T	G	GN	ccsA
174	6063	A	T	IGS	-	456	106116	T	G	GN	$\operatorname{ccs} A$
175	6066	A	T	IGS	-	457	106123	T	G	GN	ccsA
176	6082	A	C	IGS	-	458	106156	T	G	GN	$\operatorname{ccs} A$
177	6086	C	A	IGS	-	459	106176	T	C	GN	$\operatorname{ccs} A$
178	6092	A	C	IGS	-	460	106237	A	C	GN	$\operatorname{ccs} A$
179	6093	C	T	IGS	-	461	117992	G	A	IGS	-
180	6112	A	G	IGS	-	462	120466	T	G	IN	$t r n A$
181	6113	A	T	IGS	-	463	127210	A	G	GN	$r p s 7$
182	6114	A	T	IGS	-	464	127305	T	G	IGS	-
183	6123	C	G	IGS	-	465	127326	G	A	IGS	-
184	6140	A	G	IGS	-	466	127442	A	G	IGS	-
185	6141	G	T	IGS	-	467	127467	A	G	IGS	-
186	6168	C	T	IGS	-	468	127537	A	C	IGS	-
187	6175	A	G	IGS	-	469	127561	T	C	IGS	-
188	6192	G	A	IGS	-	470	127640	A	T	GN	$n d h B$
189	6235	T	A	IGS	-	471	127652	A	G	GN	$n d h B$
190	6236	G	A	IGS	-	472	127697	A	G	GN	$n d h B$
191	6238	C	T	IGS	-	473	127734	A	T	GN	$n d h B$
192	6250	A	C	IGS	-	474	127750	A	T	GN	$n d h B$
193	6276	G	A	IGS	-	475	127791	A	T	GN	$n d h B$
194	6277	T	A	IGS	-	476	128103	A	G	GN	$n d h B$
195	6281	G	A	IGS	-	477	128125	A	G	GN	$n d h B$
196	6558	A	T	IGS	-	478	128130	A	T	GN	$n d h B$
197	6559	G	T	IGS	-	479	128133	A	T	GN	$n d h B$
198	6577	A	G	IGS	-	480	128136	A	T	GN	$n d h B$
199	6579	G	C	IGS	-	481	128160	A	G	GN	$n d h B$
200	6583	T	G	IGS	-	482	128249	C	A	GN	$n d h B$
201	6584	T	G	IGS	-	483	128283	A	C	GN	$n d h B$
202	6601	A	C	IGS	-	484	128416	T	A	IN	$n d h B$
203	6606	T	A	IGS	-	485	128565	T	A	IN	$n d h B$
204	6608	A	T	IGS	-	486	128923	A	G	IN	$n d h B$
205	6611	T	A	IGS	-	487	129089	C	T	GN	$n d h B$
206	6612	A	C	IGS	-	488	129090	T	A	GN	$n d h B$
207	6613	T	G	IGS	-	489	129091	A	C	GN	$n d h B$
208	6684	A	G	IGS	-	490	129092	C	T	GN	$n d h B$
209	6686	G	A	IGS	-	491	129093	T	C	GN	$n d h B$
210	6693	T	A	IGS	-	492	129095	C	A	GN	$n d h B$
211	6697	T	C	IGS	-	493	129096	A	C	GN	$n d h B$

212	6705	C	T	IGS	-	494	129097	G	T	GN	$n d h B$
213	6707	G	T	IGS	-	495	129110	T	A	GN	$n d h B$
214	6710	T	C	IGS	-	496	129115	G	A	GN	$n d h B$
215	6724	C	A	IGS	-	497	129141	T	C	GN	$n d h B$
216	6829	C	G	GN	trnQ	498	129162	T	A	GN	$n d h B$
217	6832	G	T	GN	trnQ	499	129163	A	T	GN	$n d h B$
218	6844	G	C	GN	trnQ	500	129165	T	C	GN	$n d h B$
219	6857	A	C	IGS	-	501	129166	C	T	GN	$n d h B$
220	6859	C	A	IGS	-	502	129169	T	C	GN	$n d h B$
221	6861	T	C	IGS	-	503	129237	G	A	GN	$n d h B$
222	6878	A	T	IGS	-	504	129997	A	G	IGS	-
223	6881	A	G	IGS	-	505	130149	T	G	IGS	-
224	6896	C	G	IGS	-	506	130217	$\mathrm{C}(3,8,9)$	T	IGS	-
225	6900	T	G	IGS	-	507	130428	C	T	IGS	-
226	6907	C	G	IGS	-	508	130492	G	A	GN	trnL
227	6915	G	A	IGS	-	509	130531	T	C	IGS	-
228	6929	A	C	IGS	-	510	130541	T	G	IGS	-
229	6989	A	C	IGS	-	511	130582	G	C	IGS	-
230	7069	T	G	IGS	-	512	130622	T	C	IGS	-
231	7070	G	T	IGS	-	513	130623	C	T	IGS	-
232	7091	A	G	IGS	-	514	130637	T	G	IGS	-
233	7105	G	T	IGS	-	515	130718	A	G	IGS	-
234	7106	A	C	IGS	-	516	130719	G	A	IGS	-
235	7120	T	C	IGS		517	130721	A	C	IGS	-
236	7134	T	C	IGS	-	518	130732	T	C	IGS	-
237	7139	T	C	IGS	-	519	130826	T	C	IGS	-
238	7176	C	T	GN	psbK	520	131095	G	A	IGS	-
239	7192	C	A	GN	psbK	521	131331	T	C	IGS	-
240	7200	T	G	GN	psbK	522	131429	T	C	IGS	-
241	7215	T	C	GN	psbK	523	131509	C	A	IGS	-
242	7224	A	G	GN	psbK	524	131511	T	G	IGS	-
243	7239	T	C	GN	psbK	525	131520	G	A	IGS	-
244	7261	A	T	GN	psbK	526	131557	C	T	IGS	-
245	7272	T	C	GN	psbK	527	131605	G	A	IGS	-
246	7494	A	G	IGS	-	528	131612	A	C	IGS	-
247	7880	A	T	IGS	-	529	131638	T	C	IGS	-
248	8642	C	A	IGS	-	530	131643	C	T	IGS	-
249	8649	T	C	IGS	-	531	131740	C	T	IGS	-
250	8656	G	A	IGS	-	532	131762	T	C	IGS	-
251	8657	A	T	IGS	-	533	131881	T	G	IGS	-
252	8693	T	C	IGS	-	534	132430	G	A	GN	rpl23
253	8858	G	T	IGS	-	535	132439	T	G	GN	rpl23
254	8883	T	G	IGS	-	536	132457	T	C	GN	rpl23
255	8900	G	T	IGS	-	537	132463	A	G	GN	rpl23
256	8913	T	G	IGS	-	538	132475	A	G	GN	rpl23
257	8954	T	C	IGS	-	539	132478	A	C	GN	rpl23
258	9184	T	G	GN	psbD	540	132487	G	A	GN	rpl23
259	9185	G	T	GN	psbD	541	132490	C	A	GN	rpl23
260	9229	T	G	GN	$p s b D$	542	132641	G	T	GN	rpl23
261	10296	A	G	GN	$p s b C$	543	132832	A	C	GN	rpl2
262	10357	G	A	GN	psbC	544	133603	T	A	IN	rpl2
263	10373	T	C	GN	psbC	545	133604	T	A	IN	rpl2
264	10536	T	C	GN	$p s b C$	546	133640	T	C	IN	rpl2
265	10537	T	C	GN	psbC	547	133666	C	T	GN	rpl2
266	10555	T	C	GN	$p s b C$	548	133678	T	A	GN	rpl2
267	10566	T	C	GN	$p s b C$	549	133684	T	A	GN	$r p l 2$

268	10596	G	C	GN	$p s b C$	550	133691	T	A	GN	$r p l 2$
269	10627	G	A	GN	$p s b C$	551	133738	T	A	GN	$r p l 2$
270	10663	T	C	GN	$p s b C$	552	133741	T	A	GN	$r p l 2$
271	10666	C	T	GN	$p s b C$	553	133742	T	A	GN	$r p l 2$
272	10687	A	C	GN	$p s b C$	554	133758	T	A	GN	$r p l 2$
273	10694	T	C	GN	$p s b C$	555	133759	C	T	GN	$r p l 2$
274	10784	T	C	GN	$p s b C$	556	133781	T	C	GN	$r p l 2$
275	10848	C	G	GN	$p s b C$	557	133789	T	G	GN	$r p l 2$
276	10879	T	C	GN	$p s b C$	558	133794	T	A	GN	$r p l 2$
277	10978	T	C	GN	$p s b C$	559	133800	T	A	GN	$r p l 2$
278	11041	T	C	GN	$p s b C$	560	133809	T	A	GN	$r p l 2$
279	11308	C	T	GN	$p s b C$	561	133812	T	C	GN	rpl2
280	11327	T	G	GN	$p s b C$	562	133831	T	A	GN	$r p l 2$
281	11329	A	G	GN	$p s b C$	563	133838	T	A	GN	$r p l 2$
282	11330	A	T	GN	$p s b C$	564	133841	T	A	GN	$r p l 2$

INDELs

1	1292	-	A	IGS	-	81	70935	T	-	IN	petB
2	1329	G	-	IGS	-	82	71498	-	T	IN	petB
3	1330	T	-	IGS	-	83	78533	A $(4,5)^{2}$	-	IN	rpl16
4	1331	A	-	IGS	-	84	78534	A (4,5)	-	IN	rpll6
5	1332	A	-	IGS	-	85	78535	A (4,5)	-	IN	rpll6
6	1333	A	-	IGS	-	86	78536	A (4,5)	-	IN	rpll6
7	1467	-	T	IN	trnK	87	78537	A (4,5)	-	IN	rpl16
8	1550	T	-	IN	trnK	88	78538	A (9)	-	IN	rpll6
9	1568	T	-	GN	trnK	89	82328	-	T	GN-NS	rpl2
10	3084	T	-	GN	trnK	90	82348	C	-	GN-NS	rpl2
11	3085	A	-	GN	trnK	91	83171	G	-	IGS	-
12	3086	A	-	GN	trnK	92	83763	C ($3,8,9$)	-	IGS	-
13	3252	-	G	IN	trnK	93	83877	T	-	IGS	-
14	3323	-	T	IN	trnK	94	83878	T	-	IGS	-
15	3336	-	T	IN	trnK	95	83879	C	-	IGS	-
16	3337	-	G	IN	trnK	96	83880	C	-	IGS	-
17	3421	A	-	IN	trnK	97	83881	T	-	IGS	-
18	3422	A	-	IN	trnK	98	83882	C	-	IGS	-
19	3423	G	-	IN	trnK	99	84160	T	-	IGS	-
20	3424	A	-	IN	trnK	100	84161	T	-	IGS	-
21	3425	A	-	IN	trnK	101	84162	G	-	IGS	-
22	3426	C	-	IN	trnK	102	84163	A	-	IGS	-
23	3427	A	-	IN	trnK	103	84164	T	-	IGS	-
24	3533	A	-	IN	trnK	104	84174	A	-	IGS	-
25	3534	T	-	IN	trnK	105	84262	T	-	IGS	-
26	3609	C	-	IN	trnK	106	84419	A	-	IGS	-
27	3757	-	A	IN	trnK	107	84420	T	-	IGS	-
28	4965	-	A	IN	rps 16	108	84421	A	-	IGS	-
29	4966	-	A	IN	rps 16	109	84422	T	-	IGS	-
30	5157	-	C	IN	rps 16	110	84867	- (9)	A	IGS	-
31	5158	-	T	IN	rps 16	111	84868	- (9)	A	IGS	-
32	5649	A	-	IGS	-	112	84869	T (8)	-	IGS	-
33	5650	A	-	IGS	-	113	84870	A (8)	-	IGS	-
34	5651	C	-	IGS	-	114	84872	- (3)	A	IGS	-
35	5652	A	-	IGS	-	115	84873	- (3)	A	IGS	-
36	5660	-	A	IGS	-	116	86022	-	A	IN	$n d h B$
37	5661	-	A	IGS	-	117	86023	-	T	IN	$n d h B$
38	5735	-	G	IGS	-	118	86105	-	A	IN	$n d h B$
39	5749	A	-	IGS	-	119	86163	T	-	IN	$n d h B$

40	5750	A	-	IGS	-	120	86164	C	-	IN	$n d h B$
41	5751	A	-	IGS	-	121	87525	-	A	IGS	-
42	5752	A	-	IGS	-	122	87526	-	G	IGS	-
43	5753	T	-	IGS	-	123	87548	-	T	IGS	-
44	5754	T	-	IGS	-	124	87549	-	T	IGS	-
45	6018	A	-	IGS	-	125	87550	-	G	IGS	-
46	6019	A	-	IGS	-	126	87653	G	-	IGS	-
47	6020	A	-	IGS	-	127	87664	-	T	IGS	-
48	6021	A	-	IGS	-	128	93885	-	C	IGS	-
49	6022	A	-	IGS	-	129	103716	-	A	IGS	-
50	6023	A	-	IGS	-	130	104196	T	-	IGS	-
51	6080	- (2-9)	T	IGS	-	131	121203	-	G	IGS	-
52	6104	A	-	IGS	-	132	125930	G	-	IGS	-
53	6105	A	-	IGS	-	133	127424	-	A	IGS	-
54	6135	T	-	IGS	-	134	127436	C	-	IGS	-
55	6136	T	-	IGS	-	135	127542	-	A	IGS	-
56	6137	G	-	IGS	-	136	127543	-	A	IGS	-
57	6551	T	-	IGS	-	137	127544	-	T	IGS	-
58	6675	-	A	IGS	-	138	127565	-	T	IGS	-
59	6885	A	-	IGS	-	139	127566	-	C	IGS	-
60	7058	-	G	IGS	-	140	128924	G	-	IN	$n d h B$
61	7081	C	-	IGS	-	141	128925	A	-	IN	$n d h B$
62	8337	-	A	IGS	-	142	128984	-	T	IN	$n d h B$
63	8338	-	G	IGS	-	143	129064	-	A	IN	$n d h B$
64	8339	-	C	IGS	-	144	129065	-	T	IN	$n d h B$
45	8340	-	A	IGS	-	145	130218	A (3-8,9)	-	IGS	-
66	8520	-	G	IGS	-	146	130669	T	-	IGS	-
67	8643	-	A	IGS	-	147	130670	A	-	IGS	-
68	8737	T	-	IGS	-	148	130671	T	-	IGS	-
69	8738	T	-	IGS	-	149	130672	A	-	IGS	-
70	32046	T (9)	-	IGS	-	150	130824	A	-	IGS	-
71	32047	A (9)	-	IGS	-	151	130913	T	-	IGS	-
72	33773	A	-	IN	atpF	152	130927	A	-	IGS	-
73	37273	A	-	IGS		153	130928	T	-	IGS	-
74	61183	- (1-5, 8)	T	IGS	-	154	130929	C	-	IGS	-
75	63063	T (6-7)	-	IGS	-	155	130930	A	-	IGS	-
76	65596	A $(4,5)$	-	IGS	-	156	130931	A	-	IGS	-
77	65597	A $(4,5)$	-	IGS	-	157	131323	T	-	IGS	-
78	65598	C (4,5)	-	IGS	-	158	131916	C	-	IGS	-
79	65599	A $(4,5)$	-	IGS	-	159	132739	G	-.	GN-NS	$r p l 2$
80	65600	A $(4,5)$	-	IGS	-	160	132760	-	A	GN-NS	$r p l 2$

${ }^{1}$ See Table 1
${ }^{2} \mathrm{~A}$ SNP or an INDEL that is unique to these cultivars
any functional constraints on proteins encoded by either versions of the gene as they were proven to be effectively functioning.

Based on the SNPs of the different nine cultivars in addition to the reference plastid genome, dendrogramwas constructed (Figure 4). The tree was well-resolved withhigh bootstrap support for resolved nodes. This might be due to the fact that the Egyptian cultivars are closely related on one hand, and genetically distant from the reference
genome, on the other hand. The results indicated the correspondence between tree topology and linage of eight out of the nine cultivars. The cultivar pairs G168/SWL,SHK94/SKH95 and MSR2/ SDS13 are closely related. In other words, the cultivars with shared ancestors showed genetically closer relationships. As no information is available on the lineage of SKH95, it is likely that it shares a common ancestor with SKH94. Interestingly, the tetraploid cp genome was closely related to
the other Egyptian hexaploid wheat cultivars as compared to the reference hexaploid wheat cultivar Chinese Spring. The SNPs/INDELs tree was not resolved and bootstrap support values were low (data provided upon request). This is due to the fact that some INDELs might be artifacts rather than real. The INDELsinside the IR region are more reliable as they should show similar patterns in the two inverted regions.

There are no intra-cultivar polymorphic SNPs were detected. This might be due to the fact that sequences ofthe mt genome mapped to the cp genome were filtered out and artifacts were removed before cp genome assembly. Generally speaking, intra-varietal heteroplasmy in the wheat cp genome within the studied cultivars does not exist in contradiction with previous reportsin other plants. ${ }^{5,27}$

CONCLUSION

We conclude that plastome SNPs and INDELs successfully separated wheat cultivars and results aligned with the known ancestral information of the different genotypes.

REFERENCES

1. Bausher,M.G, Singh,N.D,, Lee,,S.B,, Jansen,R.K., Daniell, H. The complete chloroplast genome sequence of Citrus sinensis(L.) Osbeckvar 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms. BMC Plant Biol. 2006; 6:21.
2. Howe,C.J., Barbrook,A.C., Koumandou,V.L., Nisbet,R.E., Symington,H.A., et al. Evolution of the chloroplast genome. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2003; 358: 99-106; discussion 106-7.
3. Ogihara, Y., Isono, K., Kojima, T., Endo, A., Hanaoka, M., et al. Chinese Spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Mol. Biol. Rep. 2000; 18: 243-53.
4. Ogihara, Y., Yamazaki, Y., Murai, K., Kanno, A., Terachi, T., et al. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res. 2005; 33: 6235-50.
5. Yang, M., Zhang, X., Liu, G., Yin, Y., Chen, K., et al. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS ONE

2010; 5:e12762.
6. Chumley,T.W., Palmer, J.D., Mower, J.P., Fourcade, H.M., Calie,P.J., et al. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol.Evol. 2006; 23: 2175-90.
7. Hansen, A.K., Escobar, L.E., Gilbert, L.E., Jansen, R.K. Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): Implications for phylogenetic studies. Am. J. Bot. 2007a; 94:42-6.
8. Hansen,D.R., Dastidar,S.G., Cai, Z., Penaflor, C., Kuehl,J.V., et al. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol.Phylogenet. Evol. 2007b; 45: 547-63.
9. Mardanov,A.V., Ravin, N.V., Kuznetsov,B.B., Samigullin, T.H., Antonovm A.S., et al. Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J. Mol.Evol. 2008; 66: 555-64.
10. Ling, H.-Q., Zhao, S., Liu, D., Wang, J., Sun, H., et al. Draft genome of the wheat A-genome progenitor Triticumurartu. Nature 2013; 496: 87-90.
11. Cui, P., Liu, H., Lin, Q., Ding, F., Zhuo, G., et al. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. J. Genet. 2009; 88: 299-307.
12. Fang, Y., Wu, H., Zhang, T., Yang, M., Yin, Y., et al. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS ONE 2012; 7: e37164.
13. Khan, A., Khan,I.A., Heinze, B., Azim,M.K. The chloroplast genome sequence of Date palm (Phoenix dactylifera L. cv. 'Aseel'). Plant Mol. Biol. Rep. 2012; 30: 666-78.
14. Birky,C.W. Relaxed cellular controls and organelle heredity. Science 1983; 222: 468-75.
15. Chat, J., Decroocq, S., Decroocq, V., Petit, R.J. A case of chloroplast heteroplasmy in Kiwifruit (Actinidiadeliciosa) that is not transmitted during sexual reproduction. The J.Hered. 2002; 93: 293300.
16. Frey, J.E., Frey, B., Forcioli, D. Quantitative assessment of heteroplasmy levels in Senecio vulgaris chloroplast DNA. Genetica 2005; 123: 255-61.
17. Gawel, N.J., Jarret,R.L. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 1991; 9: 262-66.
18. Altschul, S.F., Madden,T.L., Schaffer, A.A., Zhang, J., Zhang, Z., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25: 3389-3402.
19. Lowe,T.M., Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25: 955-64.
20. Kurtz, S., Choudhuri,J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001; 29: 4633-42.
21. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999; 27: 573-80.
22. Zhang, T., Fang, Y., Wang, X., Deng, X., Zhang, X., et al. The complete chloroplast and mitochondrial genome sequences of Boeahygrometrica: Insights into the evolution
of plant organellar genomes. PLoS ONE 2012; 7: e30531.
23. Tang, J., Xia, H., Cao, M., Zhang, X., Zeng, W., et al. A comparison of rice chloroplast genomes. Plant Physiol. 2004; 135:412-20.
24. Sabir, J.S.M., Arasappan, D., Bahieldin, A., AboAba, S., Bafeel, S., et al. Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and relationships among cultivars. PloS ONE 2014; 9: e94158.
25. Bahieldin, A., Al-Kordy, M.A., Shokry, A.M., Gadalla,N.O., Al-Hejin,A.M.M., et al. Corrected sequence of the wheat plastid genome. C. R. Biol. 2014; 337: 499-502.
26. Feissner,R.E., Beckett,C.S., Loughman, J.A., Kranz, R.G. Mutations in cytochrome assembly and periplasmic redox pathways in Bordetella pertussis. J.Bacteriol. 2005; 187: 3941-9.
27. Straub, S.C.K., Parks, M., Weitemier, K., et al. Navigating the tip of the genomic iceberg: nextgeneration sequencing for plant systematics. Am. J. Bot. 2012; 99: 349-64.

[^0]: *RSCU: Relative synonymous codon usage

