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The paper focuses on the problem of the signal waveform extraction in the
presence of random and regular noise. The principal component analysis has been proposed
to extract the waveform. Assuming that the analyzed signal in the recorded sequence is
repeated with a certain periodicity, several portions containing the analyzed signal can
be extracted using the “caterpillar” method. The obtained matrix is then subjected to
singular value decomposition. It is shown that the waveform is defined by the first left
singular vector. Mathematical modeling demonstrates the possibility to extract the
waveform of the analyzed signal in the presence of random and regular noise. The model
calculations prove the possibility to extract the signal waveform in case the level of
random noise and the correlation of the extracted signal and regular noise change within
a wide range.

Key words: Signal analysis, regular and random noise, Waveform recovery, principal component analysis.

The problem of the waveform recovery
for signals in the presence of various types of noise
can be found in a variety of applications. Different
filtering techniques are typically used to solve the
problem1, 2. However, some a priori information on
the features of the extracted signal and noise is
essential to develop an effective filter.

The principal component analysis is
considered to be an effective way to reduce the
dimensionality of the problem or to identify the
main factors influencing the response function3-5.
We propose to apply the principal component
analysis to extract the waveform of the unknown
signal.

Signal forming
Let us assume that the time sequence

with the analyzed signal repeated with a certain
periodicity has been recorded. Define the portions
of the recorded sequence containing the analyzed
signal. Also, assume that each of the portions may
be represented as:

c=e +
where c is a portion of the recorded

sequence; e is the analyzed signal; [epsilon] is
random noise.

Form the matrix with columns being the
defined portions of the sequence. The proposed
technique implemented by us in6-10 is similar to the
transformation of the time series into a matrix which
is called “caterpillar” or Singular spectrum analysis
(SSA)8.

The matrix A can be represented8 in the
form of the singular value decomposition:
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TV UA
where U and V are unitary matrices of the

right and left singular vectors, respectively;
[Lambda] is a diagonal matrix of the singular values.
The decomposition can be written as:
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where U
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 and V
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 are i-th singular vectors;

[lambda]
i
 is a singular value.
Since norms U
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 are equal to one,

then the norm is
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contribution of the i-th expansion term to A. If this
contribution is large enough (~ 90%), the left
singular vector corresponding to the maximum
[lambda]

i
 is close to vector e.
Let U
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T  be the i-th component of the

decomposition. It is clearly seen that the j-th
column of the matrix takes the form U
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  where 

ij

is the j-th element of the vector V
i
. Thus, each

column of the singular value decomposition
component is equal to vector U

i
 up to a constant

factor. Hence, each column of the initial matrix can
be represented as:
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i.e., as a linear combination of the left
singular vectors of decomposition.

To validate the proposed algorithm, the
model calculations have been carried out. Figure 1
shows the predetermined signal.

The matrix with columns containing the
predetermined signal and random noise as a signal-
to-noise ratio (SNR) calculated as:

)()(

eT

ecec

e
T 

and equal to 4.17 is created. The initial
matrix contains 20 columns. Each column contains
1700 discrete points.

The singular value decomposition of the
obtained matrix is computed10. In this case, the
first singular value is more than 84% of the sum of
the singular values.

The extracted signal is formed from the
singular decomposition components in the form:

1Ue 111  V
where U

1
 is the first left singular vector;

[lambda]
i
 is the first singular value; V

1
 is the first

right singular vector;1 is a vector of ones.

Figure 2 shows the graphs of the predetermined
and extracted signals.

As seen in Figure 2, the waveform of the
extracted signal corresponds to the waveform of
the predetermined signal. After processing, SNR
is equal to 16.67.

Consider the performance of the proposed
algorithm in the presence of random and regular
noise. For this purpose, we create a matrix with

Table 1. Pair correlation coefficients of the predetermined signal and regular noise and the calculated
values of the goodness-of-fit for the vector of the predetermined signal and normalized first left singular vector

Pair correlation coefficient -0.035 0.031 0.097 0.162 0.228 0.294 0.359

Goodness-of-fit value x ² for a signal 0.0057 0.0058 0.0058 0.0057 0.0057 0.0056 0.0057

Table 2. The goodness-of-fit values for the vector of the predetermined
signal and normalized first left singular vector at different noise levels

Noise coefficient 0.01 0.05 0.1 0.2 0.3 0.4 0.5

Goodness-of-fit value x² for a signal 0.0057 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058
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Fig. 1. Graph of the predetermined signal

Fig. 2. The predetermined (firm line) and extracted (dash line) signals

Fig. 3. Graph of the additional signal

columns containing the other regular signal in
addition to the predetermined signal and random
noise. Figure 3 illustrates this additional signal.

The obtained matrix contains 10 columns
with 1700 entries in each column. The norms of the
predetermined signal, regular noise and random
noise are 4770, 363 and 12.35, respectively. A pair
correlation coefficient of the signal and regular
noise is 0.035, that is, the vectors of these signals
are substantially orthogonal. In the absence of
random noise, after the decomposition of the matrix

in singular values, the first left singular vector
coincides with the original dominant signal up to a
constant factor, and the second left singular vector
coincides with the vector of the regular noise. The
calculated values of goodness-of-fit X ² are equal
to 0.0057 and 0.0022, respectively.

A number of vectors of the regular noise
with different pair correlation coefficients are
created in order to assess the effect of the
correlation of the predetermined signal and regular
noise on the possibility to extract the predetermined
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signal using the described procedure. Table 1
presents the pair correlation coefficients of the
predetermined signal and regular noise and the
goodness-of-fit values for the vector of the
predetermined signal and normalized first left
singular vector.

As seen from Table 1, the increase in
correlation of the predetermined signal and regular
noise does not affect the proximity measure of
signal and normalized first left singular vector.

The corresponding goodness-of-fit values
for the dominant signal and first normalized singular
vector are calculated at different levels of random
noise to assess the effect of random noise on the
proximity measure of the predetermined signal and
first left singular vector. The level of random noise
is controlled by multiplying the noise by a constant
factor. The results are presented in Table 2

As seen from Table 2, the increase in the
noise level by a factor of 50 does not affect the
shape of the first singular vector. In all cases, the
waveform of the predetermined signal can be easily
recovered. The signal-to-noise ratio is 16.5-20.0.

RESULTS AND DISCUSSION

The obtained results show the possibility
to define the waveform of the periodic signal by
the left singular vector computed after the
decomposition of the matrix, which is obtained from
the recorded sequence using the “caterpillar”
method, in the presence of regular and random
noise. In this case, change of the level of random
noise and correlation of the extracted signal and
regular noise within a wide range do not have a
substantial effect on the waveform of the extracted
signal.
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