Molecular Simulation of GABA(A) Receptor to Study of Effects on Nervous Stimulants Inhibitory & Blood Pressure; A Nano Molecular Modeling of GABARAP

Amir Safi Najafabadi¹, Saharnaz Ahmadi², Mina Mohammadian Fardin³, Reza Rasoolzadeh^{4*} and Fahimehsadat Vajedi⁵

¹Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

²Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

³Department of Biology, college of Basis Sciences, kurdistan Science
and Research Branch, Islamic Azad University, Sanandaj, Iran.

⁴Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran

⁵Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R. Iran.

DOI: http://dx.doi.org/10.13005/bbra/1681

(Received: 16 December 2014; accepted: 23 January 2015)

GABA is the most distributed inhibitory neurotransmitter that used by 25-50% of all synapses. Most of the physiological functions of GABA are provided by GABAA receptors which it is a member of the ionotropic receptor family. The purpose of the current study on the energy levels of GABA receptor was to further analyze the effects of molecular structure stability from biophysical point of view. In this study, we worked on the Monte Carlo method with AMBER, BIO+ and OPLS force fields. kinetic energy, potential energy and total energy in 295, 298,305, 310and 315 Kelvin temperatures were used for computation. For kinetic energy, total energy and potential energy in 310 K temperature(the body normal temperature) amount of energy decreased. This can be interpreted that the molecule is in its most stable condition. The results showed that the chemical structure of GABA is stable in body temperature, so it can be used for proper drug designing.

Key words: GABA receptors, Drug design , Blood pressure, Molecular mechanics, Nervous Stimulants.

In the vertebrate central nervous system (CNS), the most distributed inhibitory neurotransmitter is γ -aminobutyric acid (GABA).1 GABA is used as transmitter by 25-50% of all synapses².

Neurons are affected by GABA through a large number of receptor subtypes which are categorized according to their pharmacological characteristics in two major groups of receptors: The ionotropic receptor family and metabotropic

Most of the physiological functions of GABA are provided by GABA₄ receptors².

The GABA_A receptor family seemingly is the most complex in terms of the chemical diversity

receptor family. The aforementioned class is divided into two subfamilies, GABA_A and GABA_C receptors according to their competence of the functional heteromeric and homomeric receptor formation and physiological and pharmacological differences. The second major class of receptors are G protein coupled receptors (GABA_B receptors) which act via second messengers coupled receptors. The molecular diversity of these ligand gated ion channels indicates significant challenges for scientists to design subunit-specific therapeutic agents³⁻⁵.

 $^{^{\}ast}$ To whom all correspondence should be addressed.

of agents interacting with this family and of the protein subunits building these heteromeric receptors⁶.

Currently 18 GABA_AR subunits have been identified. Based on sequence homology, these are divided into seven subunit classes⁷. Pharmacological properties of a particular GABA receptor is determined by the subunit combination as previously reported⁶.

This theoretical study on the energy levels of GABA_A receptor was done to further analyze the effects of its molecular structure stability from biophysical point of view.

MATERIALSANDMETHODS

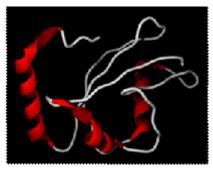

The first structure of Crystal structure of the GABA(A)-receptor was received from site PDB with PDB ID: 1 KJT, that containing 119 amino acid. This protein Classification is Transport Protein. Gene Names is Gabarap. We examine different models for this protein that the results were announced in Table 2. This table have been reported compares the main model with other six models based on RMSD(figure 2) and residues(figure 3). Features comparison of the three models are in Table 2. The models are noted in Table 1.

Table 1. The structure of the models

PDB ID	Description
1kjtA	Crystal Structure of the GABA(A) Receptor Associated Protein, GABARAP
3dowA	Complex structure of GABA type A receptor associated protein and its binding epitope on calreticulin
3d32B	Complex of GABA(A) receptor-associated protein (GABARAP) with a synthetic peptide
1kotA	Solution Structure of Human GABA Receptor Associated Protein GABARAP
1km7A	Solution Structure and Backbone Dynamics of GABARAP, GABAA Receptor Associated
	Protein
1klvA	Solution Structure and Backbone Dynamics of GABARAP, GABAA Receptor associated protein
1gnuA	GABA(A) RECEPTOR ASSOCIATED PROTEIN GABARAP

Table 2. Results of Superposition

RMSD of Models	total RMSD	RMSD of final subset
1kjtA to 3dowA 3d32B to 3dowA	1.3 Å - 114 residues	0.8 Å - 111/114 residues 0.9 Å - 112/116 residues
1kotA to 3dowA	1.9 Å - 117 residues 2.4 Å - 100 residues	1.2 Å - 109/117 residues 1.4 Å - 92/100 residues
1km7A to 3dowA 1klvA to 3dowA	3.2 Å - 100 residues	1.3 Å - 86/100 residues
1gnuA to 3dowA	1.6 Å - 117 residues	0.9 Å - 110/117 residues

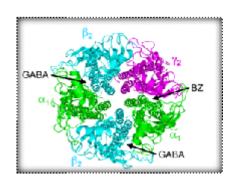


Fig. 1. Crystal Structure of the GABA(A) Receptor Associated Protein, GABARAP

In this study, changes in GABA_A energy levels are discussed according to thermodynamic temperature scale of forces. GABA molecular structure was used to determine thermodynamic terms. First, the structure was optimized by geometric optimization order. Simulation was carried out by Monte Carlo method by means of Chem Office software (Chem3D and Chem Draw) and Hyperchem. AMBER, BIO⁺ and OPLS were the chosen force fields used in current study. Molecular Mechanics calculations were assessed by Monte Carlo method⁹⁻¹⁰.

Three important energy parameters – kinetic energy, potential energy and total energy-in five different simulating temperatures (295, 298,305, 310and 315 Kelvin) were used for computation¹⁶.

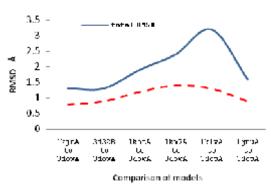
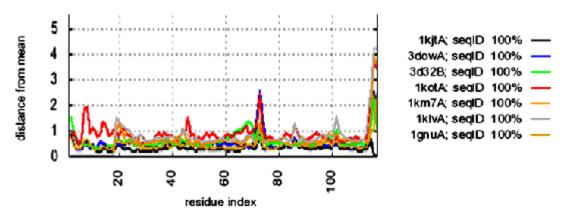


Fig. 2. RMSD of final subset and total RMSD

RESULTS AND DISCUSSION


GABA is the most distributed neurotransmitter in CNS 1 . Most of the physiological actions of GABA are generated via GABA $_{\scriptscriptstyle \Delta}$ receptors 2 .

Most GABA_A receptors in the CNS are thought to contain both \pm and 2 subunits, with one or more of the 3 , $^\prime$, or μ subunits. Theoretically evaluation of thermodynamic characteristics of this molecule could end to better cognition of its role in biology and to design proper drugs which cause less harm to patients suffering from diseases in which this receptor is involved.

In this study HyperChem software was used to computate desired data. The reason for using this software was its sophisticated and appropriate molecular modeling environment also is known as its flexibility and quality¹⁰.

It has been known that atoms are held together by forces. Function of biological systems arises from interaction of bonds between atoms. In this regard finding the lowest energy level is favorable because, in this case, the molecule is in the most stable condition¹¹⁻¹².

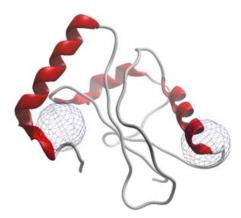

In current study AMBER, BIO⁺ and OPLS force fields were chosen. When GABA protein is modeled, it enfaces shaking, rotating, stretching, and so on. The total potential energy is the sum of previously mentioned states according to the force fields. AMBER force field has great application for proteins. It assigns all conformational energies and treats with hydrogen bond energy, and torsion

Fig. 3. Local (per residue) deviation of individual models/structures from mean of the ensemble of models/structures based on a distance RMSD (dRMSD)

fields
force
OPLS
BIO+.
AMBER.
for
energy
Kinetic
ble 3.
E

Time 295k (PS) 1 1830.77 5 1830.77 10 1830.77 20 1830.77 20 1830.77 Method Method 1 4094.199 5 2352.68 1 10 1932.895 15 1645.846 20 1470.115	298k 1823.86 1823.86 1823.86 1823.86 1823.86 1823.86 1823.86 1823.86 1823.86 1714.41 1714.441 1569.326	305k 1892.83 1892.83 1892.83 1892.83 1892.83 305k 305k 305k 305k 305k 305k	310k 1849.388 1849.388 1849.388 1849.388 1849.388 310k 310k 310k 1953.584	315k 1954.89 1954.89 1954.89 1954.89 1954.89 1954.89 315k 315k 315k 315k	5k 295k 298k 305k 310k 315K 1.89 1830.77 1823.86 1892.83 1849.388 1954.89 1.89 1830.77 1823.86 1892.83 1849.388 1954.89 1.89 1830.77 1823.86 1892.83 1849.388 1954.89 1.89 1830.77 1823.86 1892.83 1849.388 1954.89 1.89 1830.77 1823.86 1892.83 1849.388 1954.89 1.89 1830.77 1823.86 1892.83 1849.388 1954.89 1.80 1830.77 1823.86 1892.83 1849.388 1954.89 1.80 1830.77 1823.86 1892.83 1849.38 1954.89 1.80 1830.74 1823.88 305k 310k 315k 2.95k 298k 305k 310k 315k 3.854.679 3854.679 3657.468 484.736 3857.51 3058 3057.468 484.736 3857.468 <th>298k 1823.86 1823.86 1823.86 1823.86 1823.86 298k 298k 5631.932</th> <th>305k 1892.83 1892.83 1892.83 1892.83 1892.83 1892.83 1892.83 305.83 305.83 305.607 2731.362</th> <th>310k 1849.388 1849.388 1849.388 1849.388 1849.388 310k 310k 310k 310k 310k</th> <th>315K 1954.89 1954.89 1954.89 1954.89 1954.89 315K 315K 33657.468 2855.35</th> <th>295K 1246.893 1246.893 1246.893 1246.893 1246.893 315.3339</th> <th>298K 1304.75 1304.75 1304.75 1304.75 1304.75</th> <th>305K 1283.706 1283.706 1283.706 1283.706 1283.706</th> <th>310K 1254.244 1254.244 1154.244 1154.244</th> <th>315K 1325.795 1325.795 1325.795</th>	298k 1823.86 1823.86 1823.86 1823.86 1823.86 298k 298k 5631.932	305k 1892.83 1892.83 1892.83 1892.83 1892.83 1892.83 1892.83 305.83 305.83 305.607 2731.362	310k 1849.388 1849.388 1849.388 1849.388 1849.388 310k 310k 310k 310k 310k	315K 1954.89 1954.89 1954.89 1954.89 1954.89 315K 315K 33657.468 2855.35	295K 1246.893 1246.893 1246.893 1246.893 1246.893 315.3339	298K 1304.75 1304.75 1304.75 1304.75 1304.75	305K 1283.706 1283.706 1283.706 1283.706 1283.706	310K 1254.244 1254.244 1154.244 1154.244	315K 1325.795 1325.795 1325.795
po y	1823.86 1823.86 1823.86 1823.86 1823.86 298k 4064.316 2027.949 1714.441 1569.326	1892.83 1892.83 1892.83 1892.83 1892.83 AMBER 305k 305k 2374.871 2370.871	1849.388 1849.388 1849.388 1849.388 1849.388 310k 310k 4365.592 2432.521 1953.584	1954.89 1954.89 1954.89 1954.89 1954.89 1954.89 315k 315k 4506.701 2864.665	1830.77 1830.77 1830.77 1830.77 1830.77 1830.77 295k 295k 295k	1823.86 1823.86 1823.86 1823.86 1823.86 298k 298k 5631.932	1892.83 1892.83 1892.83 1892.83 1892.83 1892.83 1892.83 305.83 305.83 5712.46 3309.607 2731.362	1849.388 1849.388 1849.388 1849.388 1849.388 1849.388 310k, BIO+, O' 310k 4651.51 3846.795	1954.89 1954.89 1954.89 1954.89 1954.89 1954.89 315K 315K 3309.451 3657.468 2855.35		1304.75 1304.75 1304.75 1304.75 1304.75 298K	1283.706 1283.706 1283.706 1283.706 1283.706 OPLS	1254.244 1254.244 1254.244 1254.244 1254.244	1325.795 1325.795 1325.795 1325.795
thod ()	298k 4064.316 2615.413 2027.949 1714.441 1569.326	AMBER 305k 4690.365 3244.871 2370.871 1818.167	310k 4365.592 2432.521 1953.584	Table 4 315k 4506.701 2864.665	4. Potential et 295k 295k 5231.364 3854.467	298k 5631.932	and by AMBI BIO* 305k 3712.46 3309.607 2731.362	310k 310k 4651.51 3846.795 3065.882	PLS methods 315K 3309.451 3657.468 2855.35		298K	OPLS		1325.795
tthod	298k 4064.316 2615.413 2027.949 1714.441 1569.326	AMBER 305k 4690.365 3244.871 2370.871 1818.167	310k 4365.592 2432.521 1953.584	315k 4506.701 2864.665	295k 5231.364 3854.467	298k 5631.932 3522.51	BIO+ 305k 5712.46 3309.607 2731.362	310k 4651.51 3846.795 3065.882	315K 315K 5309.451 3657.468 2855.35	295K 315.3339	298K	OPLS		
9 (3	298k 4064.316 2615.413 2027.949 1714.441 1569.326	305k 4690.365 3244.871 2370.871 1818.167	310k 4365.592 2432.521 1953.584	315k 4506.701 2864.665	295k 5231.364 3854.467	298k 5631.932 3522.51	305k 5712.46 3309.607 2731.362	310k 4651.51 3846.795 3065.882	315K 5309.451 3657.468 2855.35	315.3339	298K	11300		
	4064.316 2615.413 2027.949 1714.441 1569.326	4690.365 3244.871 2370.871 1818.167	4365.592 2432.521 1953.584	4506.701 2864.665 2102.484	5231.364 3854.467 3140.709	5631.932 3522.51	5712.46 3309.607 2731.362	4651.51 3846.795 3065.882	5309.451 3657.468 2855.35	315.3339		305K	310K	315K
	2615.413 2027.949 1714.441 1569.326	3244.871 2370.871 1818.167	2432.521 1953.584	2864.665	3854.467	3522.51	3309.607 2731.362	3846.795	3657.468 2855.35	2021 337	294.378	959.4532	950.3374	743.5843
	1714.441	1818.167	1277.704	101		X01. 1.1.L.C	200:1012	2007.000	20000	2656 609	-1099.904	-2166.447	-2091.206	-1357.597
	1569.326		1676.552	1730.593	2570.85	2510.539	2426.607	2561.849	2556.34	-3098.395	-3249.931	-3324.384	-3396.877	-3290.425
		1571.457	1529.925	1562.39	2243.2	2314.012	2253.942	2299.889	2321.822	-3299.52	-3532.279	-3534.737	-3611.171	-3537.326
				Tabl	Table 5. Total energy computed by AMBER, BIO+, OPLS methods	rgy compute	d by AMBER	, BIO+, OPL	S methods					
Method		AMBER					BIO⁺					OPLS		
Time 295k (PS)	298k	305k	310k	315k	295k	298k	305k	310k	315K	295K	298K	305K	310K	315K
1 5924.969 5 4183.45 110 3763.665 15 3476.616	5988.176 4539.272 3951.809 3638.301	6583.195 5137.701 4263.701 3710.997	6214.98 4281.909 3802.972 3525.94	6461.59 4819.555 4057.374 3685.483	7062.134 5685.237 4971.479 4401.62	7555.792 5446.37 4651.658 4434.399	7605.289 5202.436 4624.192 4319.437	6500.898 5696.183 4915.27 4411.237	7264.341 5612.358 4810.24 4511.23	1562.227 -774.4438 -1409.716 -1851.502	2048.335 -52.8462 -1512.311 -1985.674	2243.159 -882.7406 -1636.931 -2040.678	1548.622 154.3403 -1019.031 -1995.687	2276.132 -765.4112 -1728.87 -2071.083

Fig. 4. Crystal Structure of the GABA(A) Receptor & electrostatic Sites(charges)

term. ¹³Like AMBER, OPLS is designed for computation of proteins and nucleic acids. In this force field bonded potentials are similar to AMBER and its non-bonded potentials involves vander waals and electrostatics. BIO⁺ filed is an extended form of CHARMM. Similar to AMBER and OPLS it has been designed to study macromolecules ¹⁴⁻¹⁵.

GABA protein was simulated in mentioned force fields in 5 different temperatures (295K, 298K, 305K, 310K and 315K). Based on results gathered in table 3 and 5, calculated energy levels in three different force fields for kinetic and total energy increased when the temperature being elevated. This is the pattern observed till the 310K. In this temperature the amount of energy decreased

Table 6. Single point parameters

Parameters Force field	Electrostatic Fm ⁻¹	Vdw J⋅m³ (kmol²)-1	Dihedral Kcalmol	8	Bond Kcal (mol perA°2)-	Gradient Kcalmol ⁻¹ Ang ⁻¹	Total Energy Kcalmol ⁻¹
Amber	-1159.48	4102.99	1033.23	524.392	880.457	521.751154	177899.3675
Bio	-1200.65	5160.98	420.234	593.07	853.137	500.268451	157224.7643
Opls	-4857.36	5065.02	174.79	580.641	657.366	631.865037	173637.7985
mm+	-938.662	176.27	211.888	921.271	2208.72	47.916315	2520.360152

in comparison to surrounding temperatures (305K and 315K). 310K is body normal temperature in which all the molecules must be optimized. It can be concluded that, the molecule is stable in this temperature. Table 4 exhibited the potential energy levels calculated in this study. When the molecule has less potential energy, it is less common that it participates in chemical reactions. This can be interpreted that the molecule is in its most stable condition. As it was shown although there is a slight increase in the amount of energy level in this table, a fallen could have been observed in 310K.

CONCLUSION

GABA is the most frequent neurotransmitter exists in vertebrates' CNS. As its inhibitory role in CNS, it can be used as a goal for drug designing. In this study the energy levels were calculated theoretically. The results revealed that the chemical structure of GABA is stable in body temperature. Further studies are recommended to use these data for this structure in association with drug molecules affecting GABA.

REFERENCES

- Bormann J., The 'ABC' of GABA receptors, Journal of Trends in Pharmacological Sciences. 2000; 21: 16-19.
- Sieghart W, Sperk G., Subunit composition, distribution and function of GABA(A) receptor subtypes, *Journal of Current Topics in Medicinal Chemistry*. 2002; 2(8): 795-816.
- 3. Chebib M, Johnston GA., GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology, *Journal of Medicinal Chemistry*. 2000; **43**(8): 1427-1447.
- Johnston GA., GABA(A) receptor channel pharmacology, Journal of Current Pharmaceutical Design. 2005; 11(15): 1867-1885.
- 5. Johnston GA, Hanrahan JR, Chebib M, Duke RK, Mewett KN., Modulation of ionotropic GABA receptors by natural products of plant origin, *Journal of Advances in Pharmacology*. 2006; **54**: 285-316.
- 6. Graham A.R.Johnston, Mary Chebib, Rujee K.Duke., Ionotropic GABA Reseptors: Ligand Gated Ion channels 2006; 369-372
- 7. Jacob TC, Moss SJ, Jurd R., GABAA receptor

- trafficking and its role in the dynamic modulation of neuronal inhibition, *Journal of Nature Reviews Neuroscience*. 2008; **9**(5): 331–343.
- 8. Delaney AJ, Sah P., GABA receptors inhibited by benzodiazepines mediate fast inhibitory transmission in the central amygdala, *Journal of Neuroscience*. 1999; **19**(22): 9698-9704.
- 9. Norberg J, Nilsson L., Molecular dynamics applied to nucleic acids, *Journal of Accounts of Chemical Research*. 2002; **35**(6): 465-72.
- Asghari Moghaddam N., Investigation of pH effect on 273 codon mutation of P53 gene by computational and modeling methods. *Journal of physical and theoretical chemistry*. 2014; 11(3): 141-146
- Mackerell AD., Empirical force fields for biological macromolecules: Overview and issues, *Journal of Computational Chemistry*. 2004; 25: 1584-1604.
- Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S and Weiner P., A New Force-field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins, Journal of the American Chemical Society. 1984;

- **106**(3): 765-784.
- 13. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B and Woods R., The Amber biomolecular simulation programs, *Journal of Computational Chemistry*. 2005; **26**: 1668-1688.
- Mackerell AD., Empirical force fields for biological macromolecules: Overview and issues, *Journal of Computational Chemistry*. 2004; 25: 1584-1604.
- E. Shahmansoorian, M. Hashemy 1, S. Ahmadi, Z. Jamali, N. Asghari Moghaddam, R. Rasoolzadeh., Theoretical Studies of AQP4 in Water & Gas Phases, Nano Simulation of the Monte Carlo Method by Molecular Mechanics Force Fields, *Oriental Journal of Chemistry*. 2014; 30(3): 1303-1310
- 16. Sahar Jafari-Dehkordi, Zahra Aghili, Saharnaz Ahmadi, Sepideh Jabbari, Ilia Rezazadeh, Rahele Hasani, Reza Rasoolzadeh., Molecular Mechanics Investigation of Diffrent Temperature Effects on Bacillus licheniformis α-amylase: A Computational Study, Journal of Pure & Applied Microbiology, 2015; 9(1): 607-611.