Harmonization of Epidermal Growth Factor Measurements:
Paving the Way of Finding a Biomarker in Non-Small
Cell Lung Cancer

Idania González-Pérez1,2* and Kalet León Monzón1

1Center of Molecular Immunology (CIM), Systems Biology, Zip Code 11600, Havana, Cuba.
2National Institute of Oncology and Radiobiology, Clinical Pharmacology Department, Zip Code
10400Havana, Cuba.

http://dx.doi.org/10.13005/bbra/2748

(Received: 24 April 2019; accepted: 04 June 2019)

Literature reports only a few contradictory findings regarding the capacity of serum
EGF concentrations to differentiate between healthy individuals and patients suffering non-small
cell lung cancer (NSCLC). Therefore, the possible diagnostic capacity of serum EGF levels,
suggestive of dependency on this growth factor in NSCLC patients/tumors and hence indicative
of possible response to therapies directed to EGF/EGFR, is controversial. Inconsistencies likely
derive from the lack of harmonization and even standardization in methodologies for blood
and sera processing. This manuscript is a mini-review of a recently published study, where
the control of the key factors that influence the concentration of EGF in serum, along with the
normalization of EGF concentrations by platelets count, allowed to clarify the diagnostic value
of serum EGF levels. Several EGF-related variables were identified as potential biomarkers in
NSCLC, particularly those normalized by platelets, which highlighted the differences between
patients and controls. Additionally, the study revealed that NSCLC patients differ from healthy
individuals not by the total stock of EGF, but by its higher accessibility to serum. The increase
in free/accessible EGF in blood circulation is probably relevant to the biology of NSCLC, most
likely because it reflects a higher accessibility to this tumoral growth factor.

Keywords: non-small cell lung cancer, epidermal growth factor, platelets,
Stratification; diagnostic biomarker, predictive biomarker.

The Epidermal Growth Factor (EGF), one
of the ligands of EGF receptor (EGFR), was first
isolated from submandibular glands of male mice1.
Known to stimulate the growth of several types
of epithelial tissue, possesses strong mitogenic
activity on tumor cells that converts this factor in an
attractive target for designing antitumor strategies2. One of these EGF-targeted therapies is the Cuban
vaccine CIMAvax-EGF® 3, a proven effective
treatment for advanced non-small cell lung cancer
(NSCLC). The vaccine induces anti-EGF antibodies
that recognize the EGF in circulation, preventing
its binding to EGFR, and disrupting this way the
associated signal transduction cascade in cancer

*Corresponding author E-mail: idania.gp@gmail.com

This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).
Published by Oriental Scientific Publishing Company © 2018
Patients and ultimately cell proliferation. Studies of serum EGF concentrations ([EGF]) in Cuban patients treated with this vaccine revealed that high serum EGF levels are a factor of bad prognosis for NSCLC and at the same time a predictive biomarker of CIMAvax-EGF® efficacy. However, high EGF concentrations in serum have been able to explain the bad prognosis and the good response to this vaccine not in all patients. Furthermore, the question about the capacity of EGF concentrations to discriminate between NSCLC patients and healthy individuals (its diagnostic value), suggestive of dependency on EGF in patients (tumors) and hence indicative of possible response to therapies directed to this growth factor or its receptor, has not been reliably answered by the scientific community. Thus far there are only a few reports available on this topic, some of which have published discrepant findings.

This manuscript is a mini-review of a recently published study, where the standardization of methodologies for blood and sera processing, along with the normalization of the estimates of EGF by platelets count, achieved the control of the key factors that influence the concentration of EGF in serum, helping to clarify its diagnostic value.

DISCUSSION

Serum EGF concentrations: the causes of its variability

The variability in published serum EGF levels and studies is presumably caused by the lack of harmonization and sometimes of standardization in the methodologies used for blood processing, sera collection, and EGF quantification. This methodological deficiency has a variety of expressions. Essentially, the majority of reports are unaware of the known dependency between serum EGF concentrations and the process of clot formation, during the incubation of blood for sera separation. Do not control the duration of this step, neither the type of tubes employed for blood collection, which affects clotting times and then the release of EGF by platelets, not even the temperature at which blood coagulates, which also influences this process. Another aspect that has probably increased the variability in reported values, thus contributing to the observed differences, is the single nucleotide polymorphism (SNP) of the EGF promoter gen. This polymorphism is functional, and modulates the expression levels of the molecule, thus provoking natural differences among individuals, which are not associated to their healthy condition or illness. This SNP, although extensively approached in specialized literature and linked to the risk of suffering the disease, its severity, prognosis, and response to treatment, in LC particularly, has not been considered in the comparison of serum EGF concentrations in patients, for the evaluation of its potential in prognosis and prediction; neither for its comparison with the respective concentrations in healthy individuals, for the estimation of its possible diagnostic value. Differences in the selection of controls for the different cohorts of patients (the lack of control of confounding factors as age and gender) have also contributed to discrepant results. Environmental factors could additionally contribute according to Pantsulai et al.

Finally, the analysis of published data is more complicated due to the coexistence of different quantification platforms (ELISA, LUMINEX, microarrays, among others), some of which produce not comparable results.

Other studies have also revealed similar problems for several potential predictive biomarkers, which have slowed the functional transition of these markers to the oncology clinic. The identified problems include, among others, inadequate attention to: the details of specimen collection; the definition of standard operating procedures; the requirements for analytical validation of assays and the statistical evaluation of the sources of assay variability. Only the overcoming of these issues will facilitate the identification of predictive biomarkers and the development of predictive tests, capable of guiding novel systemic therapies of fundamental importance for advancing in the field of precision oncology.

Standardization and normalization: the solution for a comprehensive harmonization

Recently, the evaluation of serum EGF levels and platelets counts in 25 NSCLC patients (at diagnosis and after first-line therapy), employing an standardized methodology for separation of the sera and its quantification, along with the normalization of estimated concentrations by...
platelets count, has allowed to elucidate platelet’s contribution to serum EGF concentrations in healthy individuals and NSCLC patients, aiding to clarify the diagnostic value of EGF levels in NSCLC. For quantification it was employed a validated ELISA, calibrated against the EGF international standard 91/530 from National Institute for Biological Standards and Control (NIBSC). It is noteworthy that the UMEELISA EGF® kit exhibits similar characteristics to other commercially available assays, in terms of precision, accuracy and dynamic range. Furthermore, its estimations correlated very well with those obtained with the Human EGF Immunoassay Quantikine® ELISA (R&D Systems, Minneapolis, MN, USA), which is probably the most widely used kit for EGF estimations at the moment.

In this study each phlebotomy provided two sera, separated at 1h and 4h after venipuncture, and therefore two EGF concentrations: [EGF]$_{1h}$ and [EGF]$_{4h}$, respectively. The [EGF]$_{1h}$ was interpreted as a good estimate of the actual concentration of free EGF in blood circulation, while the [EGF]$_{4h}$ represented a good measure of the average total stock of EGF in the blood sample of an individual. From these primary variables were constructed and studied several EGF-related variables, which were also interpreted in a simple manner from the biological point of view. The variable r = [EGF]$_{1h}$/[EGF]$_{4h}$ was interpreted as the EGF fraction from the total stock which is available in circulation. The stratification of patients using the variable removes the variability associated to stratification by absolute serum EGF concentrations, which is derived from the natural differences among individuals, and inherent even to measurements obtained under standardized procedures. Due to these interindividual differences, the concepts high/low regarding to serum EGF levels are actually relative (r). These concepts contain information which is not included in absolute EGF concentrations. An estimated EGF concentration could be considered high/low depending on the percentage it represents from the total EGF of the individual. The variable difference d = [EGF]$_{1h}$-[EGF]$_{4h}$, which offers different but complementary information to variable r, was interpreted as the EGF stored in platelets (not available to circulation). Among the variables normalized by platelets count, [EGF]$_{1h}$/platelets/L was interpreted as the average EGF contributed to circulation per platelet, and [EGF]$_{4h}$/platelets/L as the average EGF stored per platelet (not in circulation).

Diagnostic capacity of studied EGF-related variables

In the commented study several variables achieved a successful discrimination between healthy individuals and NSCLC patients, at diagnosis and after chemoradiotherapy, when were evaluated by ROC (Receiver Operating Characteristic) analysis. Differences were found between NSCLC patients and healthy individuals regarding the accessibility of EGF to circulation, but not regarding the total stock of EGF. It was observed a higher fraction of free EGF in the circulation of patients (r) and consequently a lower amount of EGF stored in platelets (d). Similarly, the analysis of normalized variables showed that the EGF per platelet accessible to circulation ([EGF]$_{1h}$/platelets/L) was significantly higher in patients, before/after chemoradiotherapy. Conversely, the average total stocks of EGF per platelet ([EGF]$_{4h}$/platelets/L) were equal in healthy controls and patients, also before/after chemoradiotherapy.

The comparison of cohorts through the normalized variables made more evident the differences between them, suggesting an altered relationship between EGF and platelets in NSCLC patients, as contrasted with healthy controls. Overall the results of this study suggest that the increase in free/accessible EGF in blood circulation is relevant to the biology of NSCLC, most likely because it reflects a higher accessibility to this tumoral growth factor.

Inference of EGF-dependency in NSCLC

According to Rodriguez et al. results, those NSCLC patients with high EGF concentrations have a poor prognosis and respond better to therapy with the CIMAvax-EGF® vaccine, which reduces the free EGF in the blood of treated patients. This suggests the existence of NSCLC variants with different underlying biology of the EGF/EGFR system, and patients with different levels of dependency on the availability of EGF in serum. Inspired in these findings, in Gonzalez-Perez et al. work the studied EGF-related variables were used for stratification purposes, trying to infer the dependency on EGF in different NSCLC patients. It was reasoned that those variables with a higher
capacity for discrimination between patients and healthy controls might better capture the aberrant EGF biology in cancer patients. Therefore, these variables might be better for the identification of those patients probably more sensitive to therapies attempting to normalize EGF/EGFR interactions.

Stratification of patients with study variables

Patients were stratified using the optimal cut-off values obtained according to Youden's in ROC analysis for each study variable. Patients were predicted as highly EGF-dependent or vice versa, in each specific case, depending on its ranking with respect to the selected thresholds (cut-off values). To compare alternative stratifications, its percentages of overlapping in predictions were calculated by pairs of variables. For the sake of comparison, the stratification method reported by Rodriguez et al. for the identification of patients more benefitted from CIMAvax-EGF® vaccine, was also included. In Rodriguez's method, patients with [EGF] above the median of the studied population appear to carry tumors apparently more EGF-dependent. Making a parallel with Rodriguez's method, in the revised study the cut-off values were also set according to the medians of either the [EGF] at 1h and 4h. Although in Rodriguez's study the time of sera separation was not controlled, it was likely close to the 4h processing in González-Pérez et al. study, given the similarity between the corresponding reported medians of [EGF] after chemoradiotherapy (873 pg/mL and 829 pg/mL, respectively).

Interestingly, the classifications by the medians of [EGF] were quite different to those obtained with the normalized variables at diagnosis. However, the variable [EGF]₁₈/platelets/L appears to classify patients quite similarly to variables d/platelets/L and [EGF]₁₈. After first-line chemoradiotherapy, the normalized variables showed a remarkably high coincidence in patient's classification, and moderate overlappings with the classification by the median of [EGF]₁₈. However, the classification by the median of [EGF]₄₈ showed a very low overlapping with the selections of any other study variable, including the classification achieved by the median of [EGF]₁₈. Therefore, the normalized variables are quite complementary and therefore will provide similar classifications of patients, but different to those obtained when the median of [EGF] is used as cut-off, as proposed Rodriguez et al., especially when using [EGF]₄₈, a variable representing a good measure of the average total stock of EGF in the blood sample of individuals, which was not able to discriminate cases from controls in the revised study. Therefore, although in Rodriguez's approach [EGF]₄₈ could explain in some measure the prognosis of patients and the vaccine's efficacy after chemoradiotherapy, the normalized variables, which were able to discriminate in that scenery, might be more valuable than [EGF]₄₈ for these purposes.

CONCLUSIONS

By accepting that the EGF levels in serum are influenced by several factors, which are mainly expressed in the process of sera separation, is comprehensible that the standardization of this procedure is crucial to guarantee results valid, reliable and comparable between laboratories. Therefore, besides a validated quantitative assay, calibrated against the current approved international standard for EGF, standardization and harmonization of key procedures are needed.

The methodology applied in the discussed manuscript for the separation of the sera, the estimation of serum EGF levels, its normalization and interpretation of results, allowed to elucidate the diagnostic value of EGF in NSCLC. Additionally, the study revealed that patients suffering NSCLC differ from healthy individuals not by the total stock of EGF, but by its higher accessibility to serum. Furthermore, the proposed approach added value to the efforts of finding an efficacy biomarker for CIMAvax-EGF® vaccine, so far approved as a second-line therapy. Overall, the study revealed that the normalized variables might be potential biomarkers in NSCLC, and good candidate biomarkers of efficacy for CIMAvax-EGF® immunotherapy. Further studies are needed to evaluate the usefulness of these markers on its predictive value to select good responders to treatment with therapies targeting the EGF/EGFR system, and also to estimate its effectiveness in prognosis, monitoring of therapy and evaluation of response, in NSCLC and other epithelial cancers. Finally, the proposed methodology, and particularly the normalization of EGF levels by platelets count, might help to better understand the role of
EGF in other diseases where this growth factor is also involved33,34,35,36,37,38,39.

REFERENCES

