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Signal de-noising has been a topic of great interest for a long period. EEG is used
to detect the neurological diseases. In the process of EEG recording, signal is contaminated
due to several factors. Hence, for analysis of EEG signal in order to detect the diseases, it
is necessary that signal must be de-noised first. Here, de-noising of signal is expressed as
an inverse problem with total variation. This is an optimization problem. The solution
of this optimization problem is obtained by using the iterative clipping algorithm. In this
article, iterative clipping algorithm is used for de-noising EEG signal. To measure the
performance of method, signal to noise ratio(SNR) and root mean square error(RMSE)
have been calculated.  It has been observed that the approach used here, works well in de-
noising the EEG signal.
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Brain is one of the most important organs
of human body which controls the coordination of
muscles and nerves. Electroencephalogram (EEG)
signal is a non-stationary biological signal and
provides a lot of important information about
different activities of the brain. It is the recording
of electrical activity along the scalp with several
electrodes placed on it over a short period of time.
EEG is used to detect several neurological
disorders1,2. There are many factors which affect
the recording and contaminate the EEG.
Electrooculographic (EOG) is the most common
physiological noise source that generates the EEG
artefacts3. Therefore, denoising plays a vital role
in analysis of the EEG signal.

The problem of de-noising a signal is
simply the noise removal from that signal. During

last few decades, many techniques have been used
to denoise (remove artefacts) the EEG signals.
Kalman filters4, adaptive filters5, 6), blind source
separation (BSS) method7, independent component
analysis (ICA) have been applied8, 9, 10, 11 in artifact
removing. Lagerlund et al12 explored the
applications of principal component analysis (PCA)
in removing artefacts from EEG signals. Wavelet
and its several variants have been widely used in
artefact removing from EEG13, 14). Empirical Mode
Decomposition 15, 16) and ensemble empirical mode
decomposition (EEMD) have been used in17 and18

to remove different artefacts present in EEG.
Another method proposed by Rudin et

al. [19], total variation denoising is used in signal
and image processing. Rodriguez & Wohlberg20,
Hu & Jacob21 and Bredies et al22 have applied it in
image processing. In total variation regularization,
minimization of a cost function produces the de-
noising filter. All the algorithms that solve the
optimization problem of de-noising can be used to
implement the total variation regularization. So
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many methods are used to solve this problem.
Selesnick and Bayram23 have developed an
algorithm based on24 which has been used in this
article.

Inverse problems deal with determining
an input that produces an observed output, or
determining an input that produces a desired
output, often in presence of noise. Mathematically,
let X and Y be spaces having appropriate
structures such as Banach space, Hilbert space.
Let  A : X ’!Y  be an operator which describes the
relationship between  the data y and the model
parameter x. Direct problem: given the input x, find
the output y; inverse problem: given an observed
output y, find an input x that produces it. The
solution minimizing
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is known as total variation regularized
solution. Here L is a smoothing and ë is
regularization parameter. Regularization parameter
ë plays important role in solving an inverse
problem25, 26.

In this article, iterative clipping algorithms
proposed in23 have been used for de-noising EEG
signal. Two performance measuring parameters,
Signal to Noise Ratios (SNR) and Root Mean
Square Errors (RMSE) have been calculated for
different values of the regularization parameter ë.
It has been observed that iterative clipping
algorithm works well for de-noising the EEG signal.

MATERIAL AND METHODS

Material
Data used here is taken from research

project of Kocaeli University, Turkey, taken by Dr.
Huya K. Sevindir on applications of wavelets
methods to EEG data collected at the Hospital of
Kocaeli University27.

Total Variation (TV) de-noising
The total variation of an N - point signal

( )x n ,  0  n  N-1≤ ≤ is defined as
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where D is an N-1 x N matrix.

Let ( )y n be the measured (noisy) data

of the form

( ) ( ) ( )y n  = x n  + ε n ,  n= 0, 1, 2,..., N-1
...(1)

where x(n) is (approximately) piecewise
constant signal and å(n) is white Gaussian noise.
Then the inverse problem is to estimate x(n) given
the noisy data y(n). TV de-noising estimates the
signal x(n) by solving the optimization problem
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The regularization parameter ë controls

the degree of smoothing18.
Algorithm for TV de-noising

Problem (2) is solved by replacing D by A
and formulating the dual by using an auxiliary
vector z5.
The iterative clipping algorithm for TV de-noising
is given by:

( 1) ( )

( 1) ( ) ( 1)

2
2 ,1

i t i

i i i

x y A z

z clip z Ax

λ

αλ

+

+ +

= −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

...(3)

where max ( ).teig AAα ≥
Numerical implementation and performance
analysis

Total variation de-noising based on (3) is
implemented by the MATLAB program described
in23. Here á = 4 is set for de-noising. In the
MATLAB program, D is implemented with the diff
command. Number of iterations is kept fixed at 100
in algorithm.

To evaluate the performance, Signal to
Noise Ratio (SNR) and Root Mean Square Error
(RMSE) have been calculated for different values
of regularization parameter ë in table1.

Figure1 shows the original data while
Figure2, Figure3, Figure4 and Figure5 show the
de-noised data.

RESULTS AND DISCUSSION

In this article, de-noising of EEG signal is
modeled as an inverse problem with total variation
and is expressed as the minimization of a non-
differentiable cost function. Minimization of a non-
differentiable cost function is a complex problem.
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Table1. Calculation of SNR and RMSE

Values of  λ SNR RMSE

0.5 29.0011 0.1756
1.0 24.5130 0.2918
1.5 22.0242 0.3853
2.0 20.2630 0.4680

Fig. 1. Original signal

Fig. 2. Total variation de-noising using iterative clipping algorithm for regularization parameter λ = 0.5 (SNR
= 29.0011, RMSE = 0.1756)

It is minimized using the iterative clipping algorithm.
It has been used for de-noising the EEG signal.
More SNR implies more de-noising and on the
contrary, more RMSE implies lesser de-noising.
Table1 shows the values of SNR and RMSE for
different values of ë. From the result obtained, we
observe that iterative clipping algorithm works well
for de-noising the EEG signal. We also observe
that as ë increases, SNR decreases and RMSE
increases. Figure1 represents the original data.

Figure2 represents the de-noised data with SNR =
29.0011& RMSE = 0.1756for ë = 0.5, Figure3
represents the de-noised data with SNR = 24.5130&
RMSE = 0.2918 for ë = 1.0, Figure4 represents the
de-noised data with SNR = 22.0242 & RMSE =
0.3853 for ë = 1.5 and Figure5 represents the de-
noised data with SNR = 20.2630 & RMSE = 0.4680
for ë = 2.0. Thus, through de-noising, the quality
of EEG signal is enhanced.

CONCLUSIONS

Increased values of signal to noise ratio
for different values of regularization parameter
show that iterative clipping algorithm is suitable
for de-noising the EEG signal. As the values of
regularization parameter increase, the signal to
noise ratio decreases and root mean square error
increases. This shows that de-noising depends
on the values of the regularization parameter. This
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Fig. 3. Total variation de-noising using iterative clipping algorithm for regularization parameter λ = 1(SNR = 24.5130,
RMSE = 0.2918)

Fig. 4. Total variation de-noising using iterative clipping algorithm for regularization parameter λ = 1.5 (SNR =
22.0242, RMSE = 0.3853)

Fig. 5. Total variation de-noising using iterative clipping algorithm for regularization parameter λ = 2.0 (SNR =
20.2630, RMSE = 0.4680)
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is reflected from table1. The calculated SNR and
RMSE for different values of regularization
parameter show a satisfactory result.
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