A Comparative Study of Spore Morphology of
Some Pteridoideae Subfamily Genera

Alexander Alexandrovich Kuznetsov1, Alexey Vladimirovich Vaganov2,
Mikhail Viktorovich Skapcov3, Andrey Sergeevich Erst4

1National Research Tomsk State University, Laboratory of Biogeochemical and of Remote
Methods of Monitoring Environmental, prospekt Lenina, 36; 634050, Tomsk, Russia.
2,3Altai State University, South-Siberian Botanical Garden, Lenina st. 61; 656049, Barnaul, Russia.
4National Research Tomsk State University, Laboratory of Biodiversity and Ecology,
prospekt Lenina, 36; 634050, Tomsk, Russia;
Central Siberian Botanical Garden of the Siberian Branch of Russian Academy of Sciences,
Zolotodolinskaya str., 101; 630090, Novosibirsk, Russia.

doi: http://dx.doi.org/10.13005/bbra/1435

(Received: 27 September 2014; accepted: 10 October 2014)

Using the method of scanning electronic microscopy (SEM), a comparative study
of ten representatives of subfamily Pteridoideae C.Chr. ex Crabbe, Jermy a. Mickel family
Pteridaceae E.D.M.Kirchn. was carried out. A comparative study of morphological
characters of investigated spores has revealed characters that allow considering the
relatedness of the studied species to one subfamily – Pteridoideae. Those characters
include spore form – triangular-roundish, laesura rays are straight, merged into
sporoderm (laesura lips), tubercles on the spore surface, and in some cases “cerebriform”
folds, exosporium surface without excrescences. For species of the genera Afropteris and
Taenitis, we described characters that allow considering them apart from the complex of
characters belonging to the species of genera Actiniopteris, Anopteris, Onychium,
Jamesonia and Pteris.

Key words: subfamily Pteridoideae, family Pteridaceae, Actiniopteris, Jamesonia, Onychium, Pteris,
Anopteris, Afropteris, Taenitis, morphology of the spores, scanning electronic microscopy (SEM).

Family Pteridaceae E.D.M. Kirchn. is considered one of the most complex families
according to the amount of unresolved issues in the systematics of its taxonomic ranks. Partly due
to insufficient knowledge of this family, as well as the lack of evidential techniques, the final volume
of the family is not determined. Members of the family Pteridaceae are spread across all continents
except Antarctica. The maximum species diversity is observed in tropical and subtropical latitudes of
the Old and New Worlds.

The system of the family Pteridaceae was repeatedly reprocessed based on the ferns systems
being developed. In the modern period, the use of molecular genetics to solve systematic problems
in a number of major works1-3 allowed to prove relatedness of five subfamilies to a family
Pteridaceae based on in-depth analysis of previously proposed systems:
Cryptogrammoideae S. Linds.; Pteridoideae C.Chr. ex Crabbe, Jermy a. Mickel;
Ceratopteridoideae (J. Sm.) R.M. Tryon;
Vittarioideae (C. Presl) Crabbe, Jermy a. Mickel; Cheilantheideae W.C. Shieh. To construct a system of the family, the information on individual genes of the chloroplast and nuclear DNA were used to recreate the intergeneric family connections in the system Pteridaceae family by constructing phylogenetic trees.

Subfamilies Ceratopteridoideae and Cheilantheideae, being brought by a number of authors to the rank of families are considered the most stable system of ferns in the world. In particular, due to the presence of stable characters of external morphology. In subfamilies Vittarioideae, Cryptogrammoideae and Pteridoideae, a reverse situation is observed – so far, there is no definitive evidence to prove the inclusion into specified subfamilies of the number of ferns. In the course of studying ferns, for historical reasons, genera, which could not be reasonably related to a particular taxonomic category for various reasons, were included in the subfamily Pteridoideae.

As a result, in the work on fern spores of Pteridaceae family from the territory of Formosa (Taiwan) due to the use of “raw” and incomplete system of ferns of Pteridaceae family, as well as a misunderstanding of its volume, an erroneous spore morphology classification was offered. Consequently, for the family Pteridaceae was proposed a classification with two types of spores – bilateral and trilete-tetrahedral spores. In the light of the above, it is necessary to correlate the results of one’s anatomical and morphological and molecular genetic studies with new information on the taxonomy of any given taxonomic group.

MATERIALS AND METHODS

Spores for the study were selected from herbarium materials stored in the herbarium of the National Museum of Natural History (R), the Botanical Garden and Botanical Museum Berlin-Dahlem (B), the V.L. Komarov Botanical Institute of the Russian Academy of Sciences (LE) and the National Research Tomsk State University (TC).

Spores were investigated using scanning electron microscope “Philips SEM 525-M”, and electron-ion scanning microscope “Quanta 200 3D” situated in Tomsk Material Testing Center for collective use of the National Research Tomsk State University, a scanning electron microscope “Hitachi – S 3400 N” (Tomsk) in the laboratory of the Institute of water and Ecological Problems (Barnaul) and JEOL JSM-6390LA Analytical Scanning Electron Microscope of Center for collective use of the V.L. Komarov Botanical Institute of the Russian Academy of Sciences.
Institute of the Russian Academy of Sciences (Saint-Petersburg). Spores were fixed using a carbon adhesive tape; to reduce the influence of the charge a method of thermal spraying by chromium, carbon or gold-palladium mixture in a vacuum sputtering plant. Spore surface was scanned in high vacuum at an accelerating voltage of 2 kV and a magnification of 1000 to 7000 times, and 10,000 to 16,000 times. The measurements of spores were carried out using “SIAMS MesoPlant” and “Photometer” programs.

An analysis was performed on the following spore morphological characters: 1 – equatorial diameter, µm; 2 – polar axis; 3 – laesura length; 4 – laesura width; 5 – the width of the equatorial ridges; 6 – roller-like thickening width; 7 – roller-like fold thickness on the distal side of the spore; 8 – roller-like fold thickness on the proximal side of the spore; 9 – roller-like thickening width around laesura; 10 – diameter of tubercles on the proximal side of the spore; 11 – excrescences diameter on the proximal side of the spore; 12 – excrescences diameter on the distal side of the spore; 13 – roller-like thickening width along the contour of the distal side of disputes; 14 – roller-like thickening width along the contour of the proximal side of spore; 15 – transverse fold at the corners of a spore. Measurements were carried out in 25 replications.

RESULTS

Actiniopteris australis (L. f.) Link, 1841, Fil. Sp.: 80. – **Acrostichum australe** L. f. 1781, Suppl.: 444

SEM-description. Spores in a polar position are triangular-roundish, with straight sides (non lociniate), seldom – roundish-triangular with concave sides (lociniate). The equatorial diameter is of (46.4) 49.35 (53.4) µm. The distal side in equatorial position is hemispherical, the proximal side is convex, with an acute pole. Equatorial ridge is distinctly expressed, (2.2) 3.4–4.9 (6.1) µm broad. The rays of laesura are straight (25.8) 27.5 (31.1) µm long, raising along the all length above the surface of the spore because of roller-like bulges of the sporoderm (‘laesura lips’). The breadth of the laesura rays is (2.1) 2.2 (2.3) µm, but in the most cases the rays do not have a clear outline because they are merged in full or in fragments in the ‘laesura lips’ (5.6) 6.7 (7.8) µm broad. The distal side is sinuate-rugose, folds are (3.4) 4.45 (5.5) µm broad. The proximal side has a tuberculosis-like ornamentation, with tubercles (1.4) 3 (4.6) µm in diam. The tubercles have more or less clear outline, the tubercles more or less fused into folds. The surface of the exosporium at the distal side is coarse-granulate, the granularity is distinctly expressed, rarely it is fine-granulate with numerous roundish excrescences (0.3) 1.45 (2.6) µm in diam. The surface at the proximal side is coarse-granulate with sparse roundish excrescences (0.1) 0.9 (1.7) µm in diam.

Investigated specimen: “Universite de Lubumbashi (Zaire), Mont Mubwe (29°45’ E, 13°20’ S), Pente rocheuse, Alt=1400 m. 6 IV 1987. No. 2514 (P); Madagascar, Prov. Fianarantsoa, Vicinity of Zazafotzy on Route 07 between Ambalavao and Ihotay, open forest and prairie, elev. 710 m. In dense, solid stand, ca 1 m across. 2 II 1975. Thomas B. Crost, No. 30373” (P).

SEM-description. Spores in a polar position are roundish-triangular or irregularly-roundish-triangular with straight sides (non lociniate). The equatorial diameter is (50.7) 58.4 (66.1) µm. The distal side in an equatorial position is hemispherical, the proximal one is flat, raising only along laesura rays. Equatorial ridge is distinctly expressed, (3.9) 5.7 (7.5) µm broad. The rays of laesura are straight, (23.1) 25.35 (27.6) µm long, raising above the spore surface along the whole length or only up to its middle with margins thickened into thick 'lips'. In the first case astride both sides of the region near the ends of the laesura ends (the 'laesura lips') and the equatorial collar does not have distinct borders. In the second case the ends of laesura rays clearly border astride both sides with the equatorial collar. The breadth of the laesura rays is (1.4) 1.7 (2.0) µm. The 'laesura lips' have smooth margins along the whole length, 4.7–5.3 µm broad. The distal side is sinuate-rugose, the folds are (2.8) 5.3 (7.8) µm broad. The proximal side has tuberculum-like ornamentation, tubercles are (1.4) 2.4–4.1 (4.9) µm in diam. The folds and tubercles have distinctive outlines. The surface of the exosporium at the distal side is fine-grainulate with sparse roundish excrescences (0.05) 3.15 (0.9) µm diam.

SEM-description. Spores in a polar position are triangular-roundish or triangular-roundish with straight or slightly convex sides (non lociniate), sometimes roundish-triangular, with slightly concave sides. The equatorial diameter is (36.6) 40.15 (43.7) µm. The distal side in an equatorial position is hemispherical, the proximal one is convex or nearly flat. The distal and proximal surfaces are separated by a clearly expressed equatorial ridge (3.2) 4.5 (5.8) µm broad. The rays of laesura are straight, (14.8) 16.8 (18.8) µm long, (0.5) 0.95 (1.4) µm broad. Bulges of sporoderm along the rays of laesura are absent. The plots near the ends of the laesura rays are not connected with the thickened parts of the equatorial collar or abruptly border upon it. The distal side of spore is tuberculate-rugose, the folds are sinuous, (2.1) 3.7 (5.3) µm broad. The proximal side has tuberculum-like ornamentation, tubercles are (0.8) 2.55 (3.3) µm in diam. The folds and tubercles have a clear outline. The surface of the exosporium at the distal side of the spore is fine-grainulate with roundish excrescences (0.2) 0.8 (1.4) µm in diam. The distal side of spore is hemispherical, and at the proximal side the exosporium is fine-grainulate with sparse roundish excrescences (0.1) 0.45 (0.8) µm in diam. Investigated specimen: [the inscription on the label is unintelligible] “No. 62” (B).

SEM-description. Spores in a polar position are roundish-triangular or irregularly-roundish-triangular-roundish, with straight or slightly convex sides (non lociniate). The equatorial diameter is (55.0) 60.85 (66.7) µm. The distal side in equatorial position is hemispherical, the proximal one convex or nearly flat. Equatorial ridge is (3.5) 4.15 (4.8) µm broad. The laesura rays are straight, (26.8) 31.2 (35.6) µm long and (1.3) 2.25 (3.2) µm broad. The margins of laesura are not thickened. The segments near the laesura ray ends are vague and do not have exact borders with the equatorial collar. The distal side is sinuate-rugose, the folds are (3.4) 4.6 (5.8) µm broad. The proximal side has tuberculum-like ornamentation, tubercles are (1.0) 2.3 (3.6) µm in diam. The folds and tubercles have not exact outlines. The surface of the exosporium is coarse-grainulate, with roundish excrescences (0.7) 1.3 (1.9) µm in diam. at the distal side, and with a single roundish excrescence (0.3) 0.85 (1.4) µm in diam. at the proximal side.

Investigated specimens: “Herbier, A. Baudouin, Fougerel, Reunion, “Juale”, No. 584 (B); Centre O.R.S.T.O.M. de Tananarive, Reunion, Sur rocks an solue rote de alaos. 5.3.71. Coll. F. Friedmann, No. 1097” (B).

SEM-description. Spores in a polar position are triangular-roundish, non lociniate. The equatorial diameter is (30.7) 36.4 (42.1) µm. The distal side of the spore in an equatorial position is hemispherical, the proximal one convex. The
equatorial ridge is distinctly expressed (2.2) 2.8 (3.4) µm broad. The rays of laesura are straight, (13.0) 14.4 (15.8) µm long, (1.1) 1.6 (2.1) µm broad, elevated along their whole length above the surface of the spore. The roller-like bulges of the sporoderm (‘laesura lips’) (1.4) 2.25 (3.1) µm broad are formed on both sides of laesura rays. The distal side is tuberculate-pleated with single tubercles and short sinuous folds (1.3) 2.45 (3.6) µm in thickness. The ornamentation of proximal side includes besides laesura and ‘laesura lips’ single tubercles and sinuous folds which are arranged parallel to the spore margins. The surface of the exosporium is nearly smooth with roundish excrescences: 0.56–0.70 µm in diam. on the distal side, and (0.41) 0.77 (1.12) µm in diam. on the proximal side.

Investigated specimen: “China (Thibet oriental). – Prov. de Moupin M. Pabbe David. 1870” (P).

SEM-description. Spores in a polar position are triangular-roundish, non locinate. The equatorial diameter is (35.1) 39.3 (43.5) µm. The distal sides of the spore in an equatorial position is hemispherical, the proximal one convex. The equatorial ridge is distinctly expressed (1.4) 2.75 (4.1) µm broad. The rays of laesura are straight, (12.5) 14.75 (17.0) µm long, (0.8) 1.5 (2.2) µm broad, elevated along their whole length above the surface of the spore. The roller-like bulges of the sporoderm (‘laesura lips’) (1.8) 2.45 (3.1) µm broad are formed on both sides of laesura rays. The distal side with sparse folds (1.4) 2.7 (4.0) µm in thickness, which form irregularly shaped cells with small roundish tubercles. The ornamentation of proximal side includes besides laesura and ‘laesura lips’ single tubercles and three sinuous folds (1.6) 2.8 (4.0) µm in thickness which are arranged parallel to the spore margins. The surface of the exosporium is coarse-grainulate with sparse roundish excrescences: (0.8) 2.4 (4.0) µm in diam. on the distal side and (0.5) 1.25 (2.0) µm in diam. on the proximal side.

Investigated specimen: “Yun-nan (Chine), No.7668, Kou fy Region de Pin tchaian leg. Yean
Py. 1910. Fr. Ducloux” (P).

Onychium siliculosum (Desv.) C.Chr. 1906, Ind. Fil.: 468. – **Pteris siliculosum** Desv. 1811, Ges. Nat. Freunde Berlin Mag. 5: 324

SEM-description. Spores in a polar position are triangular-roundish, non lociniate. The equatorial diameter is (47.11) 50.95 (54.78) μm. Both the distal and proximal sides of the spore in an equatorial position are convex. The equatorial ridge in polar position is distinctly expressed (3.96) 4.68 (5.40) μm broad. Two more folds (3.63) 4.14 (4.65) μm broad are formed on both sides of equatorial ridge. The rays of laesura are straight, (18.58) 19.2 (19.81) μm long, (1.19) 1.47 (1.74) μm broad, elevated along their whole length above the surface of the spore. The roller-like bulges of the sporoderm (‘laesura lips’) (2.85) 3.72 (4.58) μm broad are formed on both sides of laesura rays. The distal side with thick folds (3.71) 4.87 (6.02) μm in thickness located on the perimeter of the spore. The ornamentation of proximal side includes besides laesura and ‘laesura lips’ three large folds which arranged parallel to the spore margins. The surface of the exosporium is nearly smooth with multiple roundish excrescences (0.28) 1.44 (2.6) μm in diam.

Investigated specimen: “India, No. 332 (Doune par la Direction du Jardin Royal de KEW, 1867)” (P).

SEM-description. Spores in the proximal-polar and distal-polar positions are triangular-roundish, not lociniate. Equatorial diameter is (58.2) 65.1 (72.0) μm. The distal side of the spore in an equatorial position is hemispherical, the proximal one flat. The equatorial ridge is distinctly expressed, (4.4) 5.4 (6.4) μm broad. The rays of laesura are straight, (24.7) 26.5 (28.3) μm long, (1.4) 1.6 (1.8) μm broad, elevated along their whole length above the surface of the spore. The roller-like bulges of the sporoderm (‘laesura lips’) (3.2) 3.9 (4.6) μm broad are formed on both sides of laesura rays. The distal side is tuberculate-pleated with elongate tubercles and sinuous folds (2.6) 4.5 (6.4) μm in thickness, which locate on the periphery of the distal spore side. The ornamentation of proximal side includes elongate tubercles besides laesura and ‘laesura lips’ and sinuous folds on the periphery. The surface of the exosporium has sparse roundish excrescences (0.8) 1.55 (2.3) μm in diam. on the distal side and (0.6) 1.1 (1.6) μm in diam. on the proximal side.

Investigated specimen: “Yun-nan, No. 3374, En... de Yun nan ... Rochers de la martagne. 11.8.1905. F. Ducloux” (P).

Pteris aspericaulis Wallich ex J. Agardh, 1839, Recens. Spec. Pter. 22.

SEM-description. Spores in the proximal-polar and distal-polar positions are triangular-roundish, not lociniate. Equatorial diameter is (52.2) 56.34 (59.7) μm. Polar axis is (33.2) 35.0 (37.4) μm. In the equatorial position, the distal side is hemispherical proximal – convex. Laesura rays are straight (16.77) 18.7 (19.8) μm long, (1.1) 1.24 (1.4) μm wide, slightly merged on both sides into roller-like thickenings of the sporoderm with breadth of (1.9) 2.28 (2.9). Outside the laesuras and roller-like thickening on the proximal side of the spore there are tubercles of (1.4) 1.96 (2.6) μm in diameter. The width of the equatorial roller-like thickening is (6.1) 6.9 (7.8) μm. Roller-like folds on the distal side of the spore is (2.5) 3.56 (4.9) μm wide, tubercles – (1.0) 2.6 (3.3) μm in diameter. Slightly rough exosporium surface, without excrescences.

SEM-description. Spores in the proximal-polar and distal-polar positions are triangular-roundish, not lociniate. Equatorial diameter is (38.3) 42.34 (44.6) μm. In the equatorial position, the distal side is hemispherical proximal – convex. Laesura rays are straight (14.4) 15.2 (18.7) μm long, (0.8) 0.98 (1.2) μm wide, merged on both sides into roller-like thickenings of the sporoderm with breadth (1.7) 2.06 (2.3). Outside the laesuras and roller-like thickening on the proximal side of the spore there are tubercles of (0.9) 1.52 (2.3) μm in diameter. The width of the equatorial roller-like thickening is (5.1) 5.9 (6.7) μm. Roller-like folds on the distal side of the spore are (2.6) 3.07 (3.4) μm wide, tubercles – (3.7) 3.97 (4.9) μm in diameter. Slightly rough exosporium surface, without excrescences.

Pteris tenera Kaulf. 1824, Enum. Filic. 191

SEM-description. Spores in the proximal-polar and distal-polar positions are triangular-
roundish, not lociniate. Equatorial diameter is (40.4) 41.1 (41.6) µm. Polar axis is (26.8) 28.0 (29.8) µm. In the equatorial position, the distal side is hemispherical proximal – convex. Laesura rays are straight (16.4) 18.77 (20.4) µm long, (1.1) 1.38 (1.7) µm wide, merged on both sides into roller-like thickenings of the sporoderm with breadth of (2.3) 2.86 (3.5). Outside the laesuras and roller-like thickening on the proximal side of the spore there are tubercles of (1.5) 2.22 (3.1) µm in diameter, as well as roller-like thickenings – (2.1) 2.38 (2.5) µm wide. The width of the equatorial roller-like thickening (3.0) 3.48 (3.9) µm. On both sides of the equatorial roller-like thickening there are equatorial folds (1.8) 3.04 (3.7) µm wide. Roller-like fold near the proximal side is (2.5) 3.38 (4.2) µm wide, and near the distal side – (3.1) 3.36 (3.9) µm wide. Tubercles on the proximal side are (1.5) 2.22 (3.1) µm in diameter. Exosporium surface has tuberculum-like ornamentation, without excrescences.

SEM-description. Spores in the proximal-polar and distal-polar positions are triangular-roundish, not lociniate. Equatorial diameter is (35.6) 36.65 (38.1) µm. Polar axis is (25.1) 26.8 (27.9) µm. In the equatorial position, the distal side is hemispherical proximal – convex. Laesura rays are straight (16.0) 16.8 (17.6) µm long, (0.7) 0.96 (1.3) µm wide, merged on both sides into roller-like thickenings of the sporoderm with breadth are (2.2) 2.5 (2.7). Outside the laesuras and roller-like thickening on the proximal side of the spore there are tubercles (1.3) 1.46 (1.8) µm in diameter. The width of the equatorial roller-like thickening is (3.8) 4.7 (5.6) µm. Roller-like folds on the distal side of the spore are (1.5) 2.3 (3.1) µm wide. Exosporium surface is almost smooth, without excrescences. Investigated specimen: “Herb. H. Christ. Bale” (isotypus, LE).

SEM-description. Spores in a polar position are triangular-roundish, with slightly concave sides (slightly lociniate). The equatorial diameter is (40.2) 41.95 (43.7) µm. The distal side of the spore in an equatorial position is hemispherical, the proximal one flat and elevated at the pole. The rays of the laesura are straight, with smooth margins, (16.0) 17.35 (18.7) µm long, (1.7) 2.8 (3.9) µm broad, raised along their whole length above the surface of the spore. The distal surface is plicate, with a sparse folds (1.9) 2.5 (2.8) µm in thickness. The surface of the exosporium at the distal and proximal sides is even, faintly granulate, with sparse roundish excrescences of 0.3–0.8 µm in diam.

SEM-description. Spores in a polar position are triangular-roundish, with faintly concave sides (slightly lociniate). The equatorial diameter is (35.7) 39.25 (42.8) µm. The distal side in an equatorial position is hemispherical, the proximal one flat and elevated at the pole. The rays of the laesura are straight, with smooth margins, (16.0) 17.35 (18.7) µm long, (1.7) 2.8 (3.9) µm broad, raised along their whole length above the surface of the spore. The distal surface is plicate, with a sparse folds (1.9) 2.5 (2.8) µm in thickness. The surface of the exosporium at the distal and proximal sides is even, faintly granulate, with sparse roundish excrescences of 0.3–0.8 µm in diam.

Investigated specimen: “34 Jamaica 392 _Pteris heterophylla_ L., West Indies” (LE).

SEM-description. Spores in a polar position are triangular-roundish, usually with straight sides (non lociniate). The equatorial diameter is (40.4) 44.9 (48.8) µm. The rays of laesura are straight (14.9) 16.5 (18.1) µm long, (1.0) 1.4 (1.8) µm broad, at the top raised above the surface of the spore. The distal side is non-rugose. The surface of the exosporium at the distal and proximal sides is uneven, coarse-granulate, with sparse roundish excrescences of 0.2–0.5 µm in diam.

Investigated specimen: “34 Jamaica 392 _Pteris heterophylla_ L., West Indies” (LE).

SEM-description. Spores in a polar position are triangular, with straight or slightly concave. The equatorial diameter is (37.63) 43.31 (48.99) µm. The distal side of the spore in an equatorial position is flat, the proximal one – convex. The rays of laesura are straight, (14.6) 18.14 (21.67) µm long, (1.29) 1.9 (2.51) µm broad, elevated above the surface of the spore near pole. The roller-like bulges of the sporoderm (‘laesura lips’) (4.4) 5.28 (6.16) µm broad are formed on both sides of laesura rays. The distal side in the center is tuberculat, tubercules are roundish in outline and different in size, on the periphery – flat. The ornamentation of proximal side besides laesura and ‘laesura lips’ is tuberculat; tubercules are roundish, sometimes fused together. The surface of the exosporium on the both sides is arachnoid.

Investigated specimen: “3 km E of KM 21 of road Yabassi-Douale, Alt. 50–100 m, det. K.U. Kramer, 17.08.1965, 6414” (P).

SEM-description. Spores in the proximal-polar and distal-polar positions are triangular-roundish, lociniate. Equatorial diameter is (40.9) 42.38 (44.6) µm. Polar axis is (23.4) 25.7 (28.1) µm. In the equatorial position, the distal side is flat, proximal – slightly convex. Laesura rays are straight (15.8) 16.77 (17.6) µm long, (1.0) 1.28 (1.5) µm wide, merged on both sides into roller-like thickenings of the sporoderm with breadth (2.4) 2.72 (2.9). Outside the laesuras and roller-like thickening on the proximal side of the spore there are tubercules, slightly raised above the surface of spores (1.2) 2.02 (2.7) µm wide. The width of the equatorial folds is (4.6) 6.03 (7.6) µm. On both sides of the equatorial folds on the proximal side, the roller-like fold over the entire contour is (5.2) 7.16 (8.4) µm wide, and from the distal side – (6.5) 7.52 (8.3) µm wide. Tubercules on the distal side are slightly above the surface and have a diameter of (2.7) 4.3 (4.9). Exosporium surface is slightly rough, without excrescences.

Taenitis blechnoides (Willd.) Sw., 1806, Syn. Fil. (Swartz) 24: 220.

SEM-description. Spores in the proximal-polar position are roundish-triangular, not lociniate, and in distal-polar position triangular-roundish, lociniate. Equatorial diameter is (39.0) 40.36 (42.7) µm. Polar axis is (25.5) 26.2 (27.7) µm. In the equatorial position, the distal side is hemispherical, proximal – flat. Laesura rays are straight (13.8) 14.7 (16.0) µm long, (0.8) 0.95 (1.1) µm wide, merged on both sides in the rough tubercules of (0.9) 1.2 (1.5) µm in diameter. Outside the laesura and rough tubercules area, the exosporium surface is covered with small tubercules are (0.2) 0.3 (0.5) µm in diameter. On the distal side there are oblong tubercules of (1.8) 2.2 (2.5) µm long, (1.1) 1.24 (1.4) µm wide. Exosporium surface is rough, without excrescences. Investigated specimen: “Hainan. Shan Mong, Fairly common: dry, gentle slope, clay, tricket, erect. Coll. Lau S.K., No. 2935” (LE).

CONCLUSIONS

Our studies and eventually received original spore micrographs revealed common characters of external morphology of spores that are distinctive to the subfamily Pteridoideae: spores are triangular-roundish, laesura rays are straight and merged into roller-like sporoderm thickening, there are tubercules on the surface of a spore, and in some cases “cerebriform” folds, exosporium surface without excrescences. The study of spores’ morphology of species of the genera Afropteris, Jamesonia and Taenitis, revealed the characters belonging exclusively to these species. Trapezoidal form of Afroptes repens, clearly observed in the equatorial position of the spore, and justifies its indication by Alston as a separate genus9. Exosporium of Afropteris repens spores has a coralloidal structure that is not found in other species of the subfamily Pteridoideae. A description of the Taenitis blechnoides spore morphology allowed detecting large granular formations on the distal surface. The proximal side of the studied spores has a double exosporium pattern and carries elongated tubercles. Unique characters in the morphology of Taenitis blechnoides spore together with small size of the
length and width of the laesura allow making assertions about its independent position among studied specimens of the subfamily.

As a result of our study of the morphology of Pteridoideae subfamily fern spores, analysis of scientific papers on the morphology of fern Pteridaceae family spores\cite{1,2,3,4,5,6,7,8,9,10,11,12} and previous studies\cite{10-13} it was found that the Pteridoideae subfamily’s independent position in the Pteridaceae family system based on Christenhusz et al system\cite{1} is justified. Data on the on the Cryptogrammoideae and Cryptogrammoideae subfamily fern spores, analysis of the spore subfamily morphology allow to comprise Cryptogrammoideae, Llavea, Coniogramma genera, which is consistent with the Pteridaceae family system based on Christenhusz et al system\cite{1}. The boundaries between morphology character complex of Cryptogrammoideae and Pteridoideae away subfamilies’ spores are clearly traced from three subfamilies Ceratopteridoideae, Cheilanthoideae and Vittarioideae. Full detailed descriptions of the spore morphology based on micrographs, as well as the exact measurements of spore structures are required for further study on the relationships on intergeneric, specific and intersectional levels of the representatives of the Pteridoideae subfamily and Pteridaceae family as a whole.

ACKNOWLEDGEMENTS

We would like to express gratitude to the director of the Materials Research Center for collective use of the National Research Tomsk State University, Professor V.M. Kuznetsov (Tomsk), the curator of the general sector of the V.L. Komarov Herbarium of the Botanical Institute of RAS. (St. Petersburg), V.I. Dorofeev, the head of the Laboratory of Aquatic Ecology IWE PSB RAS, V.V. Kirillov, IWE PSB RAS employee E.Y. Mitrofanova, engineer of the V.L. Komarov Center for collective use BIN RAS (Saint-Petersburg), L.A. Karteza. We thank curators of the Herbaria in Paris (National Museum of Natural History) and Berlin (Botanical Garden and Museum). The studies were performed in the framework of improvement programs the competitiveness of the National Research Tomsk State University. Research has been carried out within the grant in accordance with Resolution of the Government of the Russian Federation # 220 dated April 09, 2010, under Agreement # 14.25.31.0001 with Ministry of Education and Science of the Russian Federation dated June 24,2013(BIO-GEO-CLIM).

REFERENCES